877 resultados para MODELING SYSTEM
Groundwater flow model of the Logan river alluvial aquifer system Josephville, South East Queensland
Resumo:
The study focuses on an alluvial plain situated within a large meander of the Logan River at Josephville near Beaudesert which supports a factory that processes gelatine. The plant draws water from on site bores, as well as the Logan River, for its production processes and produces approximately 1.5 ML per day (Douglas Partners, 2004) of waste water containing high levels of dissolved ions. At present a series of treatment ponds are used to aerate the waste water reducing the level of organic matter; the water is then used to irrigate grazing land around the site. Within the study the hydrogeology is investigated, a conceptual groundwater model is produced and a numerical groundwater flow model is developed from this. On the site are several bores that access groundwater, plus a network of monitoring bores. Assessment of drilling logs shows the area is formed from a mixture of poorly sorted Quaternary alluvial sediments with a laterally continuous aquifer comprised of coarse sands and fine gravels that is in contact with the river. This aquifer occurs at a depth of between 11 and 15 metres and is overlain by a heterogeneous mixture of silts, sands and clays. The study investigates the degree of interaction between the river and the groundwater within the fluvially derived sediments for reasons of both environmental monitoring and sustainability of the potential local groundwater resource. A conceptual hydrogeological model of the site proposes two hydrostratigraphic units, a basal aquifer of coarse-grained materials overlain by a thick semi-confining unit of finer materials. From this, a two-layer groundwater flow model and hydraulic conductivity distribution was developed based on bore monitoring and rainfall data using MODFLOW (McDonald and Harbaugh, 1988) and PEST (Doherty, 2004) based on GMS 6.5 software (EMSI, 2008). A second model was also considered with the alluvium represented as a single hydrogeological unit. Both models were calibrated to steady state conditions and sensitivity analyses of the parameters has demonstrated that both models are very stable for changes in the range of ± 10% for all parameters and still reasonably stable for changes up to ± 20% with RMS errors in the model always less that 10%. The preferred two-layer model was found to give the more realistic representation of the site, where water level variations and the numerical modeling showed that the basal layer of coarse sands and fine gravels is hydraulically connected to the river and the upper layer comprising a poorly sorted mixture of silt-rich clays and sands of very low permeability limits infiltration from the surface to the lower layer. The paucity of historical data has limited the numerical modelling to a steady state one based on groundwater levels during a drought period and forecasts for varying hydrological conditions (e.g. short term as well as prolonged dry and wet conditions) cannot reasonably be made from such a model. If future modelling is to be undertaken it is necessary to establish a regular program of groundwater monitoring and maintain a long term database of water levels to enable a transient model to be developed at a later stage. This will require a valid monitoring network to be designed with additional bores required for adequate coverage of the hydrogeological conditions at the Josephville site. Further investigations would also be enhanced by undertaking pump testing to investigate hydrogeological properties in the aquifer.
Resumo:
Privacy enhancing protocols (PEPs) are a family of protocols that allow secure exchange and management of sensitive user information. They are important in preserving users’ privacy in today’s open environment. Proof of the correctness of PEPs is necessary before they can be deployed. However, the traditional provable security approach, though well established for verifying cryptographic primitives, is not applicable to PEPs. We apply the formal method of Coloured Petri Nets (CPNs) to construct an executable specification of a representative PEP, namely the Private Information Escrow Bound to Multiple Conditions Protocol (PIEMCP). Formal semantics of the CPN specification allow us to reason about various security properties of PIEMCP using state space analysis techniques. This investigation provides us with preliminary insights for modeling and verification of PEPs in general, demonstrating the benefit of applying the CPN-based formal approach to proving the correctness of PEPs.
Resumo:
This paper proposes a method which aims at increasing the efficiency of enterprise system implementations. First, we argue that existing process modeling languages that feature different degrees of abstraction for different user groups exist and are used for different purposes which makes it necessary to integrate them. We describe how to do this using the meta models of the involved languages. Second, we argue that an integrated process model based on the integrated meta model needs to be configurable and elaborate on the enabling mechanisms. We introduce a business example using SAP modeling techniques to illustrate the proposed method.
Resumo:
Process modeling is a complex organizational task that requires many iterations and communication between the business analysts and the domain specialists involved in the process modeling. The challenge of process modeling is exacerbated, when the process of modeling has to be performed in a cross-organizational, distributed environment. Some systems have been developed to support collaborative process modeling, all of which use traditional 2D interfaces. We present an environment for collaborative process modeling, using 3D virtual environment technology. We make use of avatar instantiations of user ego centres, to allow for the spatial embodiment of the user with reference to the process model. We describe an innovative prototype collaborative process modeling approach, implemented as a modeling environment in Second Life. This approach leverages the use of virtual environments to provide user context for editing and collaborative exercises. We present a positive preliminary report on a case study, in which a test group modelled a business process using the system in Second Life.
Resumo:
The value of business process models is dependent not only on the choice of graphical elements in the model, but also on their annotation with additional textual and graphical information. This research discusses the use of text and icons for labeling the graphical constructs in a process model. We use two established verb classification schemes to examine the choice of activity labels in process modeling practice. Based on our findings, we synthesize a set of twenty-five activity label categories. We propose a systematic approach for graphically representing these label categories through the use of graphical icons, such that the resulting process models are easier and more readily understandable by end users. Our findings contribute to an ongoing stream of research investigating the practice of process modeling and thereby contribute to the body of knowledge about conceptual modeling quality overall.
Resumo:
This paper presents a new approach to improving the effectiveness of autonomous systems that deal with dynamic environments. The basis of the approach is to find repeating patterns of behavior in the dynamic elements of the system, and then to use predictions of the repeating elements to better plan goal directed behavior. It is a layered approach involving classifying, modeling, predicting and exploiting. Classifying involves using observations to place the moving elements into previously defined classes. Modeling involves recording features of the behavior on a coarse grained grid. Exploitation is achieved by integrating predictions from the model into the behavior selection module to improve the utility of the robot's actions. This is in contrast to typical approaches that use the model to select between different strategies or plays. Three methods of adaptation to the dynamic features of the environment are explored. The effectiveness of each method is determined using statistical tests over a number of repeated experiments. The work is presented in the context of predicting opponent behavior in the highly dynamic and multi-agent robot soccer domain (RoboCup).
Resumo:
Purpose – This paper aims to present a novel rapid prototyping (RP) fabrication methods and preliminary characterization for chitosan scaffolds. Design – A desktop rapid prototyping robot dispensing (RPBOD) system has been developed to fabricate scaffolds for tissue engineering (TE) applications. The system is a computer-controlled four-axis machine with a multiple-dispenser head. Neutralization of the acetic acid by the sodium hydroxide results in a precipitate to form a gel-like chitosan strand. The scaffold properties were characterized by scanning electron microscopy, porosity calculation and compression test. An example of fabrication of a freeform hydrogel scaffold is demonstrated. The required geometric data for the freeform scaffold were obtained from CT-scan images and the dispensing path control data were converted form its volume model. The applications of the scaffolds are discussed based on its potential for TE. Findings – It is shown that the RPBOD system can be interfaced with imaging techniques and computational modeling to produce scaffolds which can be customized in overall size and shape allowing tissue-engineered grafts to be tailored to specific applications or even for individual patients. Research limitations/implications – Important challenges for further research are the incorporation of growth factors, as well as cell seeding into the 3D dispensing plotting materials. Improvements regarding the mechanical properties of the scaffolds are also necessary. Originality/value – One of the important aspects of TE is the design scaffolds. For customized TE, it is essential to be able to fabricate 3D scaffolds of various geometric shapes, in order to repair tissue defects. RP or solid free-form fabrication techniques hold great promise for designing 3D customized scaffolds; yet traditional cell-seeding techniques may not provide enough cell mass for larger constructs. This paper presents a novel attempt to fabricate 3D scaffolds, using hydrogels which in the future can be combined with cells.
Resumo:
With the increase in the level of global warming, renewable energy based distributed generators (DGs) will increasingly play a dominant role in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cells and micro turbines will gain considerable momentum in the near future. A microgrid consists of clusters of load and distributed generators that operate as a single controllable system. The interconnection of the DG to the utility/grid through power electronic converters has raised concern about safe operation and protection of the equipments. Many innovative control techniques have been used for enhancing the stability of microgrid as for proper load sharing. The most common method is the use of droop characteristics for decentralized load sharing. Parallel converters have been controlled to deliver desired real power (and reactive power) to the system. Local signals are used as feedback to control converters, since in a real system, the distance between the converters may make the inter-communication impractical. The real and reactive power sharing can be achieved by controlling two independent quantities, frequency and fundamental voltage magnitude. In this thesis, an angle droop controller is proposed to share power amongst converter interfaced DGs in a microgrid. As the angle of the output voltage can be changed instantaneously in a voltage source converter (VSC), controlling the angle to control the real power is always beneficial for quick attainment of steady state. Thus in converter based DGs, load sharing can be performed by drooping the converter output voltage magnitude and its angle instead of frequency. The angle control results in much lesser frequency variation compared to that with frequency droop. An enhanced frequency droop controller is proposed for better dynamic response and smooth transition between grid connected and islanded modes of operation. A modular controller structure with modified control loop is proposed for better load sharing between the parallel connected converters in a distributed generation system. Moreover, a method for smooth transition between grid connected and islanded modes is proposed. Power quality enhanced operation of a microgrid in presence of unbalanced and non-linear loads is also addressed in which the DGs act as compensators. The compensator can perform load balancing, harmonic compensation and reactive power control while supplying real power to the grid A frequency and voltage isolation technique between microgrid and utility is proposed by using a back-to-back converter. As utility and microgrid are totally isolated, the voltage or frequency fluctuations in the utility side do not affect the microgrid loads and vice versa. Another advantage of this scheme is that a bidirectional regulated power flow can be achieved by the back-to-back converter structure. For accurate load sharing, the droop gains have to be high, which has the potential of making the system unstable. Therefore the choice of droop gains is often a tradeoff between power sharing and stability. To improve this situation, a supplementary droop controller is proposed. A small signal model of the system is developed, based on which the parameters of the supplementary controller are designed. Two methods are proposed for load sharing in an autonomous microgrid in rural network with high R/X ratio lines. The first method proposes power sharing without any communication between the DGs. The feedback quantities and the gain matrixes are transformed with a transformation matrix based on the line R/X ratio. The second method involves minimal communication among the DGs. The converter output voltage angle reference is modified based on the active and reactive power flow in the line connected at point of common coupling (PCC). It is shown that a more economical and proper power sharing solution is possible with the web based communication of the power flow quantities. All the proposed methods are verified through PSCAD simulations. The converters are modeled with IGBT switches and anti parallel diodes with associated snubber circuits. All the rotating machines are modeled in detail including their dynamics.
Resumo:
An electrified railway system includes complex interconnections and interactions of several subsystems. Computer simulation is the only viable means for system evaluation and analysis. This paper discusses the difficulties and requirements of effective simulation models for this specialized industrial application; and the development of a general-purpose multi-train simulator.
Resumo:
Background: Traditional causal modeling of health interventions tends to be linear in nature and lacks multidisciplinarity. Consequently, strategies for exercise prescription in health maintenance are typically group based and focused on the role of a common optimal health status template toward which all individuals should aspire. ----- ----- Materials and methods: In this paper, we discuss inherent weaknesses of traditional methods and introduce an approach exercise training based on neurobiological system variability. The significance of neurobiological system variability in differential learning and training was highlighted.----- ----- Results: Our theoretical analysis revealed differential training as a method by which neurobiological system variability could be harnessed to facilitate health benefits of exercise training. It was observed that this approach emphasizes the importance of using individualized programs in rehabilitation and exercise, rather than group-based strategies to exercise prescription.----- ----- Conclusion: Research is needed on potential benefits of differential training as an approach to physical rehabilitation and exercise prescription that could counteract psychological and physical effects of disease and illness in subelite populations. For example, enhancing the complexity and variability of movement patterns in exercise prescription programs might alleviate effects of depression in nonathletic populations and physical effects of repetitive strain injuries experienced by athletes in elite and developing sport programs.
Resumo:
Magneto-rheological (MR) fluid damper is a semi-active control device that has recently received more attention by the vibration control community. But inherent nonlinear hysteresis character of magneto-rheological fluid dampers is one of the challenging aspects for utilizing this device to achieve high system performance. So the development of accurate model is necessary to take the advantage their unique characteristics. Research by others [3] has shown that a system of nonlinear differential equations can successfully be used to describe the hysteresis behavior of the MR damper. The focus of this paper is to develop an alternative method for modeling a damper in the form of centre average fuzzy interference system, where back propagation learning rules are used to adjust the weight of network. The inputs for the model are used from the experimental data. The resulting fuzzy interference system is satisfactorily represents the behavior of the MR fluid damper with reduced computational requirements. Use of the neuro-fuzzy model increases the feasibility of real time simulation.
Resumo:
Purpose Process modeling is a complex organizational task that requires many iterations and communication between the business analysts and the domain specialists. The challenge of process modeling is exacerbated, when the process of modeling has to be performed in a cross-organizational, distributed environment. In this paper we suggest a 3D environment for collaborative process modeling, using Virtual World technology. Design/methodology/approach We suggest a new collaborative process modeling approach based on Virtual World technology. We describe the design of an innovative prototype collaborative process modeling approach, implemented as a 3D BPMN modeling environment in Second Life. We use a case study to evaluate the suggested approach. Findings Based on our case study application, we show that our approach increases user empowerment and adds significantly to the collaboration and consensual development of process models even when the relevant stakeholders are geographically dispersed. Research limitations implications – We present design work and a case study. More research is needed to more thoroughly evaluate the presented approach in a variety of real-life process modeling settings. Practical implications Our research outcomes as design artifacts are directly available and applicable by business process management professionals and can be used by business, system and process analysts in real-world practice. Originality/value Our research is the first reported attempt to develop a process modeling approach on the basis of virtual world technology. We describe a novel and innovative 3D BPMN modeling environment in Second Life.
Resumo:
Business practices vary from one company to another and business practices often need to be changed due to changes of business environments. To satisfy different business practices, enterprise systems need to be customized. To keep up with ongoing business practice changes, enterprise systems need to be adapted. Because of rigidity and complexity, the customization and adaption of enterprise systems often takes excessive time with potential failures and budget shortfall. Moreover, enterprise systems often drag business behind because they cannot be rapidly adapted to support business practice changes. Extensive literature has addressed this issue by identifying success or failure factors, implementation approaches, and project management strategies. Those efforts were aimed at learning lessons from post implementation experiences to help future projects. This research looks into this issue from a different angle. It attempts to address this issue by delivering a systematic method for developing flexible enterprise systems which can be easily tailored for different business practices or rapidly adapted when business practices change. First, this research examines the role of system models in the context of enterprise system development; and the relationship of system models with software programs in the contexts of computer aided software engineering (CASE), model driven architecture (MDA) and workflow management system (WfMS). Then, by applying the analogical reasoning method, this research initiates a concept of model driven enterprise systems. The novelty of model driven enterprise systems is that it extracts system models from software programs and makes system models able to stay independent of software programs. In the paradigm of model driven enterprise systems, system models act as instructors to guide and control the behavior of software programs. Software programs function by interpreting instructions in system models. This mechanism exposes the opportunity to tailor such a system by changing system models. To make this true, system models should be represented in a language which can be easily understood by human beings and can also be effectively interpreted by computers. In this research, various semantic representations are investigated to support model driven enterprise systems. The significance of this research is 1) the transplantation of the successful structure for flexibility in modern machines and WfMS to enterprise systems; and 2) the advancement of MDA by extending the role of system models from guiding system development to controlling system behaviors. This research contributes to the area relevant to enterprise systems from three perspectives: 1) a new paradigm of enterprise systems, in which enterprise systems consist of two essential elements: system models and software programs. These two elements are loosely coupled and can exist independently; 2) semantic representations, which can effectively represent business entities, entity relationships, business logic and information processing logic in a semantic manner. Semantic representations are the key enabling techniques of model driven enterprise systems; and 3) a brand new role of system models; traditionally the role of system models is to guide developers to write system source code. This research promotes the role of system models to control the behaviors of enterprise.
Resumo:
Hybrid system representations have been applied to many challenging modeling situations. In these hybrid system representations, a mixture of continuous and discrete states is used to capture the dominating behavioural features of a nonlinear, possible uncertain, model under approximation. Unfortunately, the problem of how to best design a suitable hybrid system model has not yet been fully addressed. This paper proposes a new joint state measurement relative entropy rate based approach for this design purpose. Design examples and simulation studies are presented which highlight the benefits of our proposed design approaches.