974 resultados para Language processing
Resumo:
This article discusses the detection of discourse markers (DM) in dialog transcriptions, by human annotators and by automated means. After a theoretical discussion of the definition of DMs and their relevance to natural language processing, we focus on the role of like as a DM. Results from experiments with human annotators show that detection of DMs is a difficult but reliable task, which requires prosodic information from soundtracks. Then, several types of features are defined for automatic disambiguation of like: collocations, part-of-speech tags and duration-based features. Decision-tree learning shows that for like, nearly 70% precision can be reached, with near 100% recall, mainly using collocation filters. Similar results hold for well, with about 91% precision at 100% recall.
Resumo:
Esta tesina indaga en el ámbito de las Tecnologías de la Información sobre los diferentes desarrollos realizados en la interpretación automática de la semántica de textos y su relación con los Sistemas de Recuperación de Información. Partiendo de una revisión bibliográfica selectiva se busca sistematizar la documentación estableciendo de manera evolutiva los principales antecedentes y técnicas, sintetizando los conceptos fundamentales y resaltando los aspectos que justifican la elección de unos u otros procedimientos en la resolución de los problemas.
Resumo:
Esta tesina indaga en el ámbito de las Tecnologías de la Información sobre los diferentes desarrollos realizados en la interpretación automática de la semántica de textos y su relación con los Sistemas de Recuperación de Información. Partiendo de una revisión bibliográfica selectiva se busca sistematizar la documentación estableciendo de manera evolutiva los principales antecedentes y técnicas, sintetizando los conceptos fundamentales y resaltando los aspectos que justifican la elección de unos u otros procedimientos en la resolución de los problemas.
Resumo:
Esta tesina indaga en el ámbito de las Tecnologías de la Información sobre los diferentes desarrollos realizados en la interpretación automática de la semántica de textos y su relación con los Sistemas de Recuperación de Información. Partiendo de una revisión bibliográfica selectiva se busca sistematizar la documentación estableciendo de manera evolutiva los principales antecedentes y técnicas, sintetizando los conceptos fundamentales y resaltando los aspectos que justifican la elección de unos u otros procedimientos en la resolución de los problemas.
Resumo:
The time delay of arrival (TDOA) between multiple microphones has been used since 2006 as a source of information (localization) to complement the spectral features for speaker diarization. In this paper, we propose a new localization feature, the intensity channel contribution (ICC) based on the relative energy of the signal arriving at each channel compared to the sum of the energy of all the channels. We have demonstrated that by joining the ICC features and the TDOA features, the robustness of the localization features is improved and that the diarization error rate (DER) of the complete system (using localization and spectral features) has been reduced. By using this new localization feature, we have been able to achieve a 5.2% DER relative improvement in our development data, a 3.6% DER relative improvement in the RT07 evaluation data and a 7.9% DER relative improvement in the last year's RT09 evaluation data.
Resumo:
Two new features have been proposed and used in the Rich Transcription Evaluation 2009 by the Universidad Politécnica de Madrid, which outperform the results of the baseline system. One of the features is the intensity channel contribution, a feature related to the location of the speaker. The second feature is the logarithm of the interpolated fundamental frequency. It is the first time that both features are applied to the clustering stage of multiple distant microphone meetings diarization. It is shown that the inclusion of both features improves the baseline results by 15.36% and 16.71% relative to the development set and the RT 09 set, respectively. If we consider speaker errors only, the relative improvement is 23% and 32.83% on the development set and the RT09 set, respectively.
Resumo:
In the last two decades, there has been an important increase in research on speech technology in Spain, mainly due to a higher level of funding from European, Spanish and local institutions and also due to a growing interest in these technologies for developing new services and applications. This paper provides a review of the main areas of speech technology addressed by research groups in Spain, their main contributions in the recent years and the main focus of interest these days. This description is classified in five main areas: audio processing including speech, speaker characterization, speech and language processing, text to speech conversion and spoken language applications. This paper also introduces the Spanish Network of Speech Technologies (RTTH. Red Temática en Tecnologías del Habla) as the research network that includes almost all the researchers working in this area, presenting some figures, its objectives and its main activities developed in the last years.
Resumo:
In the beginning of the 90s, ontology development was similar to an art: ontology developers did not have clear guidelines on how to build ontologies but only some design criteria to be followed. Work on principles, methods and methodologies, together with supporting technologies and languages, made ontology development become an engineering discipline, the so-called Ontology Engineering. Ontology Engineering refers to the set of activities that concern the ontology development process and the ontology life cycle, the methods and methodologies for building ontologies, and the tool suites and languages that support them. Thanks to the work done in the Ontology Engineering field, the development of ontologies within and between teams has increased and improved, as well as the possibility of reusing ontologies in other developments and in final applications. Currently, ontologies are widely used in (a) Knowledge Engineering, Artificial Intelligence and Computer Science, (b) applications related to knowledge management, natural language processing, e-commerce, intelligent information integration, information retrieval, database design and integration, bio-informatics, education, and (c) the Semantic Web, the Semantic Grid, and the Linked Data initiative. In this paper, we provide an overview of Ontology Engineering, mentioning the most outstanding and used methodologies, languages, and tools for building ontologies. In addition, we include some words on how all these elements can be used in the Linked Data initiative.
Resumo:
La cámara Kinect está desarrollada por Prime Sense en colaboración con Microsoft para la consola XBox, ofrece imágenes de profundidad gracias a un sensor infrarrojo. Este dispositivo también incluye una cámara RGB que ofrece imágenes a color además de una serie de micrófonos colocados de tal manera que son capaces de saber de qué ángulo proviene el sonido. En un principio Kinect se creó para el ocio doméstico pero su bajo precio (en comparación con otras cámaras de iguales características) y la aceptación por parte de desarrolladores han explotado sus posibilidades. El objetivo de este proyecto es, partiendo de estos datos, la obtención de variables cinemáticas tales como posición, velocidad y aceleración de determinados puntos de control del cuerpo de un individuo como pueden ser el cabeza, cuello, hombros, codos, muñecas, caderas, rodillas y tobillos a partir de los cuales poder extraer patrones de movimiento. Para ello se necesita un middleware mediante el entorno de libre distribución (GNU) multiplataforma. Como IDE se ha utilizado Processing, un entorno open source creado para proyectos de diseño. Además se ha utilizado el contenedor SimpleOpenNI, desarrollado por estudiantes e investigadores que trabajan con Kinect. Esto ofrece la posibilidad de prescindir del SDK de Microsoft, el cual es propietario y obliga a utilizar su sistema operativo, Windows. Usando estas herramientas se consigue una solución viable para varios sistemas operativos. Se han utilizado métodos y facilidades que ofrece el lenguaje orientado a objetos Java (Proccesing hereda de este), y se ha planteado una solución basada en un modelo cliente servidor que dota de escalabilidad al proyecto. El resultado del proyecto es útil en aplicaciones para poblaciones con riesgo de exclusión (como es el espectro autista), en telediagnóstico, y en general entornos donde se necesite estudiar hábitos y comportamientos a partir del movimiento humano. Con este proyecto se busca tener una continuidad mediante otras aplicaciones que analicen los datos ofrecidos. ABSTRACT. The Kinect camera is developed by PrimeSense in collaboration with Microsoft for the xBox console provides depth images thanks to an infrared sensor. This device also includes an RGB camera that provides color images in addition to a number of microphones placed such that they are able to know what angle the sound comes. Kinect initially created for domestic leisure but its low prices (compared to other cameras with the same characteristics) and acceptance by developers have exploited its possibilities. The objective of this project is based on this data to obtain kinematic variables such as position, velocity and acceleration of certain control points of the body of an individual from which to extract movement patterns. These points can be the head, neck, shoulders, elbows, wrists, hips, knees and ankles. This requires a middleware using freely distributed environment (GNU) platform. Processing has been used as a development environment, and open source environment created for design projects. Besides the container SimpleOpenNi has been used, it developed by students and researchers working with Kinect. This offers the possibility to dispense with the Microsoft SDK which owns and agrees to use its operating system, Windows. Using these tools will get a viable solution for multiple operating systems. We used methods and facilities of the Java object-oriented language (Processing inherits from this) and has proposed a solution based on a client-server model which provides scalability to the project. The result of the project is useful in applications to populations at risk of exclusion (such as autistic spectrum), in remote diagnostic, and in general environments that need study habits and behaviors from human motion. This project aims to have continuity using other applications to analyze the data provided.
Resumo:
Vivimos en una época en la que cada vez existe una mayor cantidad de información. En el dominio de la salud la historia clínica digital ha permitido digitalizar toda la información de los pacientes. Estas historias clínicas digitales contienen una gran cantidad de información valiosa escrita en forma narrativa que sólo podremos extraer recurriendo a técnicas de procesado de lenguaje natural. No obstante, si se quiere realizar búsquedas sobre estos textos es importante analizar que la información relativa a síntomas, enfermedades, tratamientos etc. se puede refererir al propio paciente o a sus antecentes familiares, y que ciertos términos pueden aparecer negados o ser hipotéticos. A pesar de que el español ocupa la segunda posición en el listado de idiomas más hablados con más de 500 millones de hispano hablantes, hasta donde tenemos de detección de la negación, probabilidad e histórico en textos clínicos en español. Por tanto, este Trabajo Fin de Grado presenta una implementación basada en el algoritmo ConText para la detección de la negación, probabilidad e histórico en textos clínicos escritos en español. El algoritmo se ha validado con 454 oraciones que incluían un total de 1897 disparadores obteniendo unos resultado de 83.5 %, 96.1 %, 96.9 %, 99.7% y 93.4% de exactitud con condiciones afirmados, negados, probable, probable negado e histórico respectivamente. ---ABSTRACT---We live in an era in which there is a huge amount of information. In the domain of health, the electronic health record has allowed to digitize all the information of the patients. These electronic health records contain valuable information written in narrative form that can only be extracted using techniques of natural language processing. However, if you want to search on these texts is important to analyze if the relative information about symptoms, diseases, treatments, etc. are referred to the patient or family casework, and that certain terms may appear negated or be hypothesis. Although Spanish is the second spoken language with more than 500 million speakers, there seems to be no method of detection of negation, hypothesis or historical in medical texts written in Spanish. Thus, this bachelor’s final degree presents an implementation based on the ConText algorithm for the detection of negation, hypothesis and historical in medical texts written in Spanish. The algorithm has been validated with 454 sentences that included a total of 1897 triggers getting a result of 83.5 %, 96.1 %, 96.9 %, 99.7% and 93.4% accuracy with affirmed, negated, hypothesis, negated hypothesis and historical respectively.
Resumo:
La Gestión de Recursos Humanos a través de Internet es un problema latente y presente actualmente en cualquier sitio web dedicado a la búsqueda de empleo. Este problema también está presente en AFRICA BUILD Portal. AFRICA BUILD Portal es una emergente red socio-profesional nacida con el ánimo de crear comunidades virtuales que fomenten la educación e investigación en el área de la salud en países africanos. Uno de los métodos para fomentar la educación e investigación es mediante la movilidad de estudiantes e investigadores entre instituciones, apareciendo así, el citado problema de la gestión de recursos humanos. Por tanto, este trabajo se centra en solventar el problema de la gestión de recursos humanos en el entorno específico de AFRICA BUILD Portal. Para solventar este problema, el objetivo es desarrollar un sistema de recomendación que ayude en la gestión de recursos humanos en lo que concierne a la selección de las mejores ofertas y demandas de movilidad. Caracterizando al sistema de recomendación como un sistema semántico el cual ofrecerá las recomendaciones basándose en las reglas y restricciones impuestas por el dominio. La aproximación propuesta se basa en seguir el enfoque de los sistemas de Matchmaking semánticos. Siguiendo este enfoque, por un lado, se ha empleado un razonador de lógica descriptiva que ofrece inferencias útiles en el cálculo de las recomendaciones y por otro lado, herramientas de procesamiento de lenguaje natural para dar soporte al proceso de recomendación. Finalmente para la integración del sistema de recomendación con AFRICA BUILD Portal se han empleado diversas tecnologías web. Los resultados del sistema basados en la comparación de recomendaciones creadas por el sistema y por usuarios reales han mostrado un funcionamiento y rendimiento aceptable. Empleando medidas de evaluación de sistemas de recuperación de información se ha obtenido una precisión media del sistema de un 52%, cifra satisfactoria tratándose de un sistema semántico. Pudiendo concluir que con la solución implementada se ha construido un sistema estable y modular posibilitando: por un lado, una fácil evolución que debería ir encaminada a lograr un rendimiento mayor, incrementando su precisión y por otro lado, dejando abiertas nuevas vías de crecimiento orientadas a la explotación del potencial de AFRICA BUILD Portal mediante la Web 3.0. ---ABSTRACT---The Human Resource Management through Internet is currently a latent problem shown in any employment website. This problem has also appeared in AFRICA BUILD Portal. AFRICA BUILD Portal is an emerging socio-professional network with the objective of creating virtual communities to foster the capacity for health research and education in African countries. One way to foster this capacity of research and education is through the mobility of students and researches between institutions, thus appearing the Human Resource Management problem. Therefore, this dissertation focuses on solving the Human Resource Management problem in the specific environment of AFRICA BUILD Portal. To solve this problem, the objective is to develop a recommender system which assists the management of Human Resources with respect to the selection of the best mobility supplies and demands. The recommender system is a semantic system which will provide the recommendations according to the domain rules and restrictions. The proposed approach is based on semantic matchmaking solutions. So, this approach on the one hand uses a Description Logics reasoning engine which provides useful inferences to the recommendation process and on the other hand uses Natural Language Processing techniques to support the recommendation process. Finally, Web technologies are used in order to integrate the recommendation system into AFRICA BUILD Portal. The results of evaluating the system are based on the comparison between recommendations created by the system and by real users. These results have shown an acceptable behavior and performance. The average precision of the system has been obtained by evaluation measures for information retrieval systems, so the average precision of the system is at 52% which may be considered as a satisfactory result taking into account that the system is a semantic system. To conclude, it could be stated that the implemented system is stable and modular. This fact on the one hand allows an easy evolution that should aim to achieve a higher performance by increasing its average precision and on the other hand keeps open new ways to increase the functionality of the system oriented to exploit the potential of AFRICA BUILD Portal through Web 3.0.
Resumo:
Esta tesis tiene por objeto estudiar las posibilidades de realizar en castellano tareas relativas a la resolución de problemas con sistemas basados en el conocimiento. En los dos primeros capítulos se plantea un análisis de la trayectoria seguida por las técnicas de tratamiento del lenguaje natural, prestando especial interés a los formalismos lógicos para la comprensión del lenguaje. Seguidamente, se plantea una valoración de la situación actual de los sistemas de tratamiento del lenguaje natural. Finalmente, se presenta lo que constituye el núcleo de este trabajo, un sistema llamado Sirena, que permite realizar tareas de adquisición, comprensión, recuperación y explicación de conocimiento en castellano con sistemas basados en el conocimiento. Este sistema contiene un subconjunto del castellano amplio pero simple formalizado con una gramática lógica. El significado del conocimiento se basa en la lógica y ha sido implementado en el lenguaje de programación lógica Prolog II vS. Palabras clave: Programación Lógica, Comprensión del Lenguaje Natural, Resolución de Problemas, Gramáticas Lógicas, Lingüistica Computacional, Inteligencia Artificial.---ABSTRACT---The purpose of this thesis is to study the possibi1 ities of performing in Spanish problem solving tasks with knowledge based systems. Ule study the development of the techniques for natural language processing with a particular interest in the logical formalisms that have been used to understand natural languages. Then, we present an evaluation of the current state of art in the field of natural language processing systems. Finally, we introduce the main contribution of our work, Sirena a system that allows the adquisition, understanding, retrieval and explanation of knowledge in Spanish with knowledge based systems. Sirena can deal with a large, although simple» subset of Spanish. This subset has been formalised by means of a logic grammar and the meaning of knowledge is based on logic. Sirena has been implemented in the programming language Prolog II v2. Keywords: Logic Programming, Understanding Natural Language, Problem Solving, Logic Grammars, Cumputational Linguistic, Artificial Intelligence.
Resumo:
This paper describes our participation at SemEval- 2014 sentiment analysis task, in both contextual and message polarity classification. Our idea was to com- pare two different techniques for sentiment analysis. First, a machine learning classifier specifically built for the task using the provided training corpus. On the other hand, a lexicon-based approach using natural language processing techniques, developed for a ge- neric sentiment analysis task with no adaptation to the provided training corpus. Results, though far from the best runs, prove that the generic model is more robust as it achieves a more balanced evaluation for message polarity along the different test sets.
Resumo:
In this paper we present a dataset componsed of domain-specific sentiment lexicons in six languages for two domains. We used existing collections of reviews from Trip Advisor, Amazon, the Stanford Network Analysis Project and the OpinRank Review Dataset. We use an RDF model based on the lemon and Marl formats to represent the lexicons. We describe the methodology that we applied to generate the domain-specific lexicons and we provide access information to our datasets.