948 resultados para ISO 9000 Series
Resumo:
Background: Extreme temperatures are associated with cardiovascular disease (CVD) deaths. Previous studies have investigated the relative CVD mortality risk of temperature, but this risk is heavily influenced by deaths in frail elderly persons. To better estimate the burden of extreme temperatures we estimated their effects on years of life lost due to CVD. Methods and Results: The data were daily observations on weather and CVD mortality for Brisbane, Australia between 1996 and 2004. We estimated the association between daily mean temperature and years of life lost due to CVD, after adjusting for trend, season, day of the week, and humidity. To examine the non-linear and delayed effects of temperature, a distributed lag non-linear model was used. The model’s residuals were examined to investigate if there were any added effects due to cold spells and heat waves. The exposure-response curve between temperature and years of life lost was U-shaped, with the lowest years of life lost at 24 °C. The curve had a sharper rise at extremes of heat than of cold. The effect of cold peaked two days after exposure, whereas the greatest effect of heat occurred on the day of exposure. There were significantly added effects of heat waves on years of life lost. Conclusions: Increased years of life lost due to CVD are associated with both cold and hot temperatures. Research on specific interventions is needed to reduce temperature-related years of life lost from CVD deaths.
Resumo:
The Midwest Independent Transmission System Operator (MISO) has experienced significant amounts of wind power development within the last decade. The MISO footprint spans the majority of the upper Midwest region of the country, from the Dakotas to Indiana and as far east as Michigan. These areas have a rich wind energy resource. States in the MISO footprint have passed laws or set goals that require load serving entities to supply a portion of their load using renewable energy. In order to meet these requirements, significant investments are needed to build the transmission infrastructure necessary to deliver the power from these often remote wind energy resources to the load centers. This paper presents some of the transmission planning related work done at MISO which was largely influenced by current and future needs for increased wind power generation in the footprint. Specifically, topics covered are generator interconnection, long-term planning coordination, and cost-allocation for new transmission lines.
Resumo:
The Midwestern US is a wind-rich resource and wind power is being developed in this region at a very brisk pace. Transporting this energy resource to load centers invariably requires massive transmission lines. This issue of developing additional transmission to support reliable integration of wind on to the power grid provides a multitude of interesting challenges spanning various areas of power systems such as transmission planning, real-time operations and cost-allocation for new transmission. The Midwest ISO as a regional transmission provider is responsible for processing requests to interconnect proposed generation on to the transmission grid under its purview. This paper provides information about some of the issues faced in performing interconnection planning studies and Midwest ISO's efforts to improve its generator interconnection procedures. Related cost-allocation efforts currently ongoing at the Midwest ISO to streamline integration of bulk quantities of wind power in to the transmission grid are also presented.
Resumo:
This paper presents a maintenance optimisation method for a multi-state series-parallel system considering economic dependence and state-dependent inspection intervals. The objective function considered in the paper is the average revenue per unit time calculated based on the semi-regenerative theory and the universal generating function (UGF). A new algorithm using the stochastic ordering is also developed in this paper to reduce the search space of maintenance strategies and to enhance the efficiency of optimisation algorithms. A numerical simulation is presented in the study to evaluate the efficiency of the proposed maintenance strategy and optimisation algorithms. The simulation result reveals that maintenance strategies with opportunistic maintenance and state-dependent inspection intervals are more cost-effective when the influence of economic dependence and inspection cost is significant. The study further demonstrates that the optimisation algorithm proposed in this paper has higher computational efficiency than the commonly employed heuristic algorithms.
Resumo:
Background: Malaria is a major public health burden in the tropics with the potential to significantly increase in response to climate change. Analyses of data from the recent past can elucidate how short-term variations in weather factors affect malaria transmission. This study explored the impact of climate variability on the transmission of malaria in the tropical rain forest area of Mengla County, south-west China. Methods: Ecological time-series analysis was performed on data collected between 1971 and 1999. Auto-regressive integrated moving average (ARIMA) models were used to evaluate the relationship between weather factors and malaria incidence. Results: At the time scale of months, the predictors for malaria incidence included: minimum temperature, maximum temperature, and fog day frequency. The effect of minimum temperature on malaria incidence was greater in the cool months than in the hot months. The fog day frequency in October had a positive effect on malaria incidence in May of the following year. At the time scale of years, the annual fog day frequency was the only weather predictor of the annual incidence of malaria. Conclusion: Fog day frequency was for the first time found to be a predictor of malaria incidence in a rain forest area. The one-year delayed effect of fog on malaria transmission may involve providing water input and maintaining aquatic breeding sites for mosquitoes in vulnerable times when there is little rainfall in the 6-month dry seasons. These findings should be considered in the prediction of future patterns of malaria for similar tropical rain forest areas worldwide.
Resumo:
We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.
Resumo:
Time series regression models were used to examine the influence of environmental factors (soil water content and soil temperature) on the emissions of nitrous oxide (N2O) from subtropical soils, by taking into account temporal lagged environmental factors, autoregressive processes, and seasonality for three horticultural crops in a subtropical region of Australia. Fluxes of N2O, soil water content, and soil temperature were determined simultaneously on a weekly basis over a 12-month period in South East Queensland. Annual N2O emissions for soils under mango, pineapple, and custard apple were 1590, 1156, and 2038 g N2O-N/ha, respectively, with most emissions attributed to nitrification. The N2O-N emitted from the pineapple and custard apple crops was equivalent to 0.26 and 2.22%, respectively, of the applied mineral N. The change in soil water content was the key variable for describing N2O emissions at the weekly time-scale, with soil temperature at a lag of 1 month having a significant influence on average N2O emissions (averaged) at the monthly time-scale across the three crops. After accounting for soil temperature and soil water content, both the weekly and monthly time series regression models exhibited significant autocorrelation at lags of 1–2 weeks and 1–2 months, and significant seasonality for weekly N2O emissions for mango crop and for monthly N2O emissions for mango and custard apple crops in this location over this time-frame. Time series regression models can explain a higher percentage of the temporal variation of N2O emission compared with simple regression models using soil temperature and soil water content as drivers. Taking into account seasonal variability and temporal persistence in N2O emissions associated with soil water content and soil temperature may lead to a reduction in the uncertainty surrounding estimates of N2O emissions based on limited sampling effort.
Resumo:
Purpose: The recognition of breast cancer as a spectrum tumor in Lynch syndrome remains controversial. The aim of this study was to explore features of breast cancers arising in Lynch syndrome families. Experimental Design: This observational study involved 107 cases of breast cancer identified from the Colorectal Cancer Family Registry (Colon CFR) from 90 families in which (a) both breast and colon cancer co-occurred, (b) families met either modified Amsterdam criteria, or had at least one early-onset (<50 years) colorectal cancer, and (c) breast tissue was available within the biospecimen repository for mismatch repair (MMR) testing. Eligibility criteria for enrollment in the Colon CFR are available online. Breast cancers were reviewed by one pathologist. Tumor sections were stained for MLH1, PMS2, MSH2, and MSH6, and underwent microsatellite instability testing. Results: Breast cancer arose in 35 mutation carriers, and of these, 18 (51%) showed immunohistochemical absence of MMR protein corresponding to the MMR gene mutation segregating the family. MMR-deficient breast cancers were more likely to be poorly differentiated (P = 0.005) with a high mitotic index (P = 0.002), steroid hormone receptor–negative (estrogen receptor, P = 0.031; progesterone receptor, P = 0.022), and to have peritumoral lymphocytes (P = 0.015), confluent necrosis (P = 0.002), and growth in solid sheets (P < 0.001) similar to their colorectal counterparts. No difference in age of onset was noted between the MMR-deficient and MMR-intact groups. Conclusions: MMR deficiency was identified in 51% of breast cancers arising in known mutation carriers. Breast cancer therefore may represent a valid tissue option for the detection of MMR deficiency in which spectrum tumors are lacking
Resumo:
Abstract. For interactive systems, recognition, reproduction, and generalization of observed motion data are crucial for successful interaction. In this paper, we present a novel method for analysis of motion data that we refer to as K-OMM-trees. K-OMM-trees combine Ordered Means Models (OMMs) a model-based machine learning approach for time series with an hierarchical analysis technique for very large data sets, the K-tree algorithm. The proposed K-OMM-trees enable unsupervised prototype extraction of motion time series data with hierarchical data representation. After introducing the algorithmic details, we apply the proposed method to a gesture data set that includes substantial inter-class variations. Results from our studies show that K-OMM-trees are able to substantially increase the recognition performance and to learn an inherent data hierarchy with meaningful gesture abstractions.
Resumo:
Fishtown is a series of mediated animated works which embody artistic conceptions of ambience and explore the interplay between foreground and background. The series draws upon a representation of natural patterns and rhythms in the ambient environment and is produced using a hybrid style of animation process that incorporates motion capture, dynamics and keyframe animation to construct a biomemtic peripheral rhythm. The display of the work is a crucial part of the project, and contributes a considerable amount to the reception of the work. Based on the ambient conceptions defined by Cage, Eno and Bizzocchi, ambient animation should incorporate some form of ambient display. As Eno (1978) states, it should be as ignorable as it is interesting. The ultimate intention is to place the work outside the gallery setting, to provide a more neutral ambient setting for the viewing of the work, and therefore the use of an ambient display is necessary if the work is to be situated in an ambient setting. Craig Walsh is a contemporary artist producing work for large scale projections in ambient settings. Completing Walsh's masterclass in 2011 (Tanawha Arts and Ecology Centre) has been an important factor in arriving at a strategy for the display of the Fishtown series. The most recent work in the Fishtown series was developed during a residency at the Crane Arts studios in Philadelphia USA in August 2012, and is comprised of a screen based animated work, utilizing large scale digital projection. Documentation of this work can be found at the Crane Arts Residency Website: http://cranearts.qcagriffith.com/crane-arts-residency-chris-denaro
Resumo:
Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve given in ISO 834. However, modern residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the performance of load bearing LSF walls was undertaken using a series of realistic design fire curves developed based on Eurocode parametric curves and Barnett’s BFD curves. It included both full scale fire tests and numerical studies of LSF walls without any insulation, and the recently developed externally insulated composite panels. This paper presents the details of fire tests first, and then the numerical models of tested LSF wall studs. It shows that suitable finite element models can be developed to predict the fire rating of load bearing walls under real fire conditions. The paper also describes the structural and fire performances of externally insulated LSF walls in comparison to the non-insulated walls under real fires, and highlights the effects of standard and real fire curves on fire performance of LSF walls.
Resumo:
In this paper, general order conditions and a global convergence proof are given for stochastic Runge Kutta methods applied to stochastic ordinary differential equations ( SODEs) of Stratonovich type. This work generalizes the ideas of B-series as applied to deterministic ordinary differential equations (ODEs) to the stochastic case and allows a completely general formalism for constructing high order stochastic methods, either explicit or implicit. Some numerical results will be given to illustrate this theory.
Resumo:
BACKGROUND: Hot and cold temperatures have been associated with childhood asthma. However, the relationship between daily temperature variation and childhood asthma is not well understood. This study aimed to examine the relationship between diurnal temperature range (DTR) and childhood asthma. METHODS: A Poisson generalized linear model combined with a distributed lag non-linear model was used to examine the relationship between DTR and emergency department admissions for childhood asthma in Brisbane, from January 1st 2003 to December 31st 2009. RESULTS: There was a statistically significant relationship between DTR and childhood asthma. The DTR effect on childhood asthma increased above a DTR of 10[degree sign]C. The effect of DTR on childhood asthma was the greatest for lag 0--9 days, with a 31% (95% confidence interval: 11% -- 58%) increase of emergency department admissions per 5[degree sign]C increment of DTR. Male children and children aged 5--9 years appeared to be more vulnerable to the DTR effect than others. CONCLUSIONS: Large DTR may trigger childhood asthma. Future measures to control and prevent childhood asthma should include taking temperature variability into account. More protective measures should be taken after a day of DTR above10[degree sign]C.
Resumo:
As one of the longest running franchises in cinema history, and with its well-established use of product placements, the James Bond film series provides an ideal framework within which to measure and catalogue the number and types of products used within a particular timeframe. This case study will draw upon extensive content analysis of the James Bond film series in order to chart the evolution of product placement across the franchise's 50 year history.
Resumo:
This book examines the influence of emerging economies on international legal rules, institutions and processes. It describes recent and predicted changes in economic, political and cultural powers, flowing from the growth of emerging economies such as China, India, Brazil, South Africa and Russia, and analyses the influence of these changes on various legal frameworks and norms. Its contributors come from a variety of fields of expertise, including international law, politics, environmental law, human rights, economics and finance. The book begins by providing a broad analysis of the nature of the shifting global dynamic in its historical and contemporary contexts, including analysis of the rise of China as a major economic and political power and the end of the period of United States domination in international affairs. It illustrates the impact of these changes on states’ domestic policies and priorities, as they adapt to a new international dynamic. The authors then offer a range of perspectives on the impact of these changes as they relate to specific regimes and issues, including climate change regulation, collective security, indigenous rights, the rights of women and girls, environmental protection and foreign aid and development. The book provides a fresh and comprehensive analysis of an issue with extensive implications for international law and politics.