967 resultados para Haemodynamic Modelling, Cardiovascular System, Mock Circulation Loops, Cardiovascular Devices
Resumo:
Abstract: Since ancient times, people have attributed a variety of health benefits to moderate consumption of fermented beverages such as wine and beer, often without any scientific basis. There is evidence that excessive or binge alcohol consumption is associated with increased morbidity and mortality, as well as with work related and traffic accidents. On the contrary, at the moment, several epidemiological studies have suggested that moderate consumption of alcohol reduces overall mortality, mainly from coronary diseases. However, there are discrepancies regarding the specific effects of different types of beverages (wine, beer and spirits) on the cardiovascular system and cancer, and also whether the possible protective effects of alcoholic beverages are due to their alcoholic content (ethanol) or to their non-alcoholic components (mainly polyphenols). Epidemiological and clinical studies have pointed out that regular and moderate wine consumption (one to two glasses a day) is associated with decreased incidence of cardiovascular disease (CVD), hypertension, diabetes, and certain types of cancer, including colon, basal cell, ovarian, and prostate carcinoma. Moderate beer consumption has also been associated with these effects, but to a lesser degree, probably because of beer"s lower phenolic content. These health benefits have mainly been attributed to an increase in antioxidant capacity, changes in lipid profiles, and the anti-inflammatory effects produced by these alcoholic beverages. This review summarizes the main protective effects on the cardiovascular system and cancer resulting from moderate wine and beer intake due mainly to their common components, alcohol and polyphenols.
Resumo:
OBJECTIVES: Cardiovascular disease is a leading cause of morbidity and mortality in the elderly population. We evaluated the adequacy of prescribing (miss and under used) with respect to STOPP-START criteria. METHODS: A sample of 100 patients hospitalized in cardiovascular specialty divisions (medicine or surgery) or in the different sectors making up the geriatric network (day-care hospital, short or rehabilitation ward, nursing home) has been considered. Drug prescriptions at the admission time were analysed. RESULTS: Eight hundred and seventy-four prescriptions were analysed. In 65% of patients, from 5 to 10 medications were prescribed and in 28% over 10. Fifty-four percent of patients had, at least, one potentially inappropriate prescription (PIP) by STOPP. Among them, 48% of PIP prescriptions contained 1, 41% 2 and 11% 3 or more. The omission of one medication according to START criteria concerned 57% of the sample. Among them, 46% had one omission, 44% 2 to 3 and 10% 4 omissions or over. The cardiovascular system is the one most concerned by the PIP. Whether 28.1% of the PIP by STOPP criteria concerned cardiovascular drugs, the omission of prescription, according to START criteria, was 41.8%. There was no significant difference between the different settings studied. There was no effect of age or sex on the impact of PIP (P>0.20) or being polymédiqué (P=0.44). According to the criteria STOPP-A, the prescription of antiplatelet (indication and dose) was highlighted. Prescribing omission also concerned antiplatelet agents but also statins in patients with atherosclerosis as well as antiplatelet and anticoagulant in patients with permanent atrial fibrillation and inhibitor of angiotensin converting enzyme (ACE) after myocardial infarction or with chronic heart failure. CONCLUSION: Potentially inappropriate prescribing medications were very common in elderly patients with cardiovascular conditions. They concerned as much as underusing of important drugs with potential benefits and prescribing commission of treatment that did not fit with patients' comorbidities and/or characteristics.
Resumo:
Neuropeptide Y (NPY) is an abundant neurotransmitter in the brain and sympathetic nervous system (SNS). Hypothalamic NPY is known to be a key player in food intake and energy expenditure. NPY’s role in cardiovascular regulation has also been shown. In humans, a Leucine 7 to Proline 7 single nucleotide polymorphism (p.L7P) in the signal peptide of the NPY gene has been associated with traits of metabolic syndrome. The p.L7P subjects also show increased stress-related release of NPY, which suggests that more NPY is produced and released from SNS. The main objective of this study was to create a novel mouse model with noradrenergic cell-targeted overexpression of NPY, and to characterize the metabolic and vascular phenotype of this model. The mouse model was named OE-NPYDBH mouse. Overexpression of NPY in SNS and brain noradrenergic neurons led to increased adiposity without significant weight gain or increased food intake. The mice showed lipid accumulation in the liver at young age, which together with adiposity led to impaired glucose tolerance and hyperinsulinemia with age. The mice displayed stress-related increased mean arterial blood pressure, increased plasma levels of catecholamines and enhanced SNS activity measured by GDP binding activity to brown adipose tissue mitochondria. Sexual dimorphism in NPY secretion pattern in response to stress was also seen. In an experimental model of vascular injury, the OE-NPYDBH mice developed more pronounced neointima formation compared with wildtype controls. These results together with the clinical data indicate that NPY in noradrenergic cells plays an important role in the pathogenesis of metabolic syndrome and related diseases. Furthermore, new insights on the role of the extrahypothalamic NPY in the process have been obtained. The OE-NPYDBH model provides an important tool for further stress and metabolic syndrome-related studies.
Resumo:
Abstract. Excessive alcohol consumption is associated with increased morbidity and mortality as well as with labour and traffic accidents. However, current evidence suggests beneficial effects of moderate drinking on cardiovascular events including coronary heart disease, ischaemic stroke, peripheral arterial disease and congestive heart failure. The underlying mechanisms to explain these protective effects against coronary heart disease include an increase in high-density lipoprotein cholesterol and an increase in insulin sensitivity, and a decrease in platelet aggregation and circulating concentrations of fibrinogen. However, there are discrepancies regarding the specific effects of different types of beverages on the cardiovascular system, and also whether the possible protective effects of alcoholic beverages are due to their alcohol component (ethanol) or non-alcoholic products containing, mainly polyphenols. Recent randomised clinical trials have shown that wine, a polyphenol-rich alcoholic beverage, provides higher antioxidant and anti-inflammatory effects than some spirits such as gin, a polyphenol-free alcoholic beverage. In addition, dealcoholized red wine decreases blood pressure through a nitric oxide mediated mechanism, suggesting a protective effect of polyphenols on vascular function. Other studies performed in women have observed that daily doses of 1520 g of alcohol as red wine are sufficient to elicit protective effects similar to those observed in men who consumed higher doses of wine. In conclusion, moderate consumption of wine exerts a protective effect on biomarkers related to the progression and development of atherosclerosis due to its alcoholic (ethanol) and non-alcoholic (polyphenols) content. Women are more sensitive to the beneficial effects of wine.
Resumo:
Caveolae are membrane micro-domains enriched in cholesterol, sphingolipids and caveolins, which are transmembrane proteins with a hairpin-like structure. Caveolae participate in receptor-mediated trafficking of cell surface receptors and receptor-mediated signaling. Furthermore, caveolae participate in clathrin-independent endocytosis of membrane receptors. On the one hand, caveolins are involved in vascular and cardiac dysfunction. Also, neurological abnormalities in caveolin-1 knockout mice and a link between caveolin-1 gene haplotypes and neurodegenerative diseases have been reported. The aim of this article is to present the rationale for considering caveolae as potential targets in cardiovascular and neurological diseases.
Resumo:
The melanocortin peptides, including melanocyte-stimulating hormones, α-, β- and γ-MSH, are derived from the precursor peptide proopiomelanocortin and mediate their biological actions via five different melanocortin receptors, named from MC1 to MC5. Melanocortins have been implicated in the central regulation of energy balance and cardiovascular functions, but their local effects, via yet unidentified sites of action, in the vasculature, and their therapeutic potential in major vascular pathologies remain unclear. Therefore, the main aim of this thesis was to characterise the role of melanocortins in circulatory regulation, and to investigate whether targeting of the melanocortin system by pharmacological means could translate into therapeutic benefits in the treatment of cardiovascular diseases such as hypertension. In experiments designed to elucidate the local effects of α-MSH on vascular tone, it was found that α-MSH improved blood vessel relaxation via a nitric oxide (NO)-dependent mechanism without directly contracting or relaxing blood vessels. Furthermore, α-MSH was shown to regulate the expression and function of endothelial NO synthase in cultured human endothelial cells via melanocortin 1 receptors. In keeping with the vascular protective role, pharmacological treatment of mice with α-MSH analogues displayed therapeutic efficacy in conditions associated with vascular dysfunction such as obesity. Furthermore, α-MSH analogues elicited marked diuretic and natriuretic responses, which together with their vascular effects, seemed to provide protection against sodium retention and blood pressure elevation in experimental models of hypertension. In conclusion, the present results identify novel effects for melanocortins in the local control of vascular function, pointing to the potential future use of melanocortin analogues in the treatment of cardiovascular pathologies.
Resumo:
Background: The function of the autonomic nervous system (ANS) can be evaluated with heart rate variability (HRV). Decreased HRV is associated with aging, the male sex, increased heart rate, and overall increased cardiometabolic risk. It has been hypothesized that early atherosclerotic vascular changes and ANS function are related. Aims: The aims were to assess reference values on HRV in young adults, and examine associations with HRV and cardiometabolic risk factors and metabolic syndrome (MetS) and to study relations between HRV and ultrasonographically measured vascular properties. Participants and methods: The present thesis is part of the Cardiovascular Risk in Young Finns Study. The thesis is based on the follow-up study in 2001, when the study individuals were 24-39 years of age. HRV data were available on 1 956 individuals. Results: HRV was inversely associated with age and heart rate (for all p<0.001). Highfrequency HRV (HF) was higher, and low-frequency HRV (LF) lower in women than men (p<0.0001 for both). MetS was associated with 11% decreased HF and 12% increased LF/HF-ratio in women, and 8% decreased HF and 4% increased LF/HF-ratio in men. Carotid artery distensibility was independently associated with HF and total HRV (for both p<0.05). Conclusions: The reference values in young adults were generated. Decreased HRV was associated with age, the male sex and increased heart rate. Women had higher HF and lower LF variability than men. MetS was related to decrease in HRV. The observed associations between carotid elasticity and HRV, supports the hypothesis that reduction in carotid elasticity may lead to decrease in autonomic cardiac control.
Resumo:
Considerable evidence suggests that nitroxidergic mechanisms in the nucleus tractus solitarii (NTS) participate in cardiovascular reflex control. Much of that evidence, being based on responses to nitric oxide precursors or inhibitors of nitric oxide synthesis, has been indirect and circumstantial. We sought to directly determine cardiovascular responses to nitric oxide donors microinjected into the NTS and to determine if traditional receptor mechanisms might account for responses to certain of these donors in the central nervous system. Anesthetized adult Sprague Dawley rats that were instrumented for recording arterial pressure and heart rate were used in the physiological studies. Microinjection of nitric oxide itself into the NTS did not produce any cardiovascular responses and injection of sodium nitroprusside elicited minimal depressor responses. The S-nitrosothiols, S-nitrosoglutathione (GSNO), S-nitrosoacetylpenicillamine (SNAP), and S-nitroso-D-cysteine (D-SNC) produced no significant cardiovascular responses while injection of S-nitroso-L-cysteine (L-SNC) elicited brisk, dose-dependent depressor and bradycardic responses. In contrast, injection of glyceryl trinitrate elicited minimal pressor responses without associated changes in heart rate. It is unlikely that the responses to L-SNC were dependent on release of nitric oxide in that 1) the responses were not affected by injection of oxyhemoglobin or an inhibitor of nitric oxide synthesis prior to injection of L-SNC and 2) L- and D-SNC released identical amounts of nitric oxide when exposed to brain tissue homogenates. Although GSNO did not independently affect blood pressure, its injection attenuated responses to subsequent injection of L-SNC. Furthermore, radioligand binding studies suggested that in rat brain synaptosomes there is a saturable binding site for GSNO that is displaced from that site by L-SNC. The studies suggest that S-nitrosocysteine, not nitric oxide, may be an interneuronal messenger for cardiovascular neurons in the NTS
Resumo:
This review describes the ways in which the primary bradycardia and peripheral vasoconstriction evoked by selective stimulation of peripheral chemoreceptors can be modified by the secondary effects of a chemoreceptor-induced increase in ventilation. The evidence that strong stimulation of peripheral chemoreceptors can evoke the behavioural and cardiovascular components of the alerting or defence response which is characteristically evoked by novel or noxious stimuli is considered. The functional significance of all these influences in systemic hypoxia is then discussed with emphasis on the fact that these reflex changes can be overcome by the local effects of hypoxia: central neural hypoxia depresses ventilation, hypoxia acting on the heart causes bradycardia and local hypoxia of skeletal muscle and brain induces vasodilatation. Further, it is proposed that these local influences can become interdependent, so generating a positive feedback loop that may explain sudden infant death syndrome (SIDS). It is also argued that a major contributor to these local influences is adenosine. The role of adenosine in determining the distribution of O2 in skeletal muscle microcirculation in hypoxia is discussed, together with its possible cellular mechanisms of action. Finally, evidence is presented that in chronic systemic hypoxia, the reflex vasoconstrictor influences of the sympathetic nervous system are reduced and/or the local dilator influences of hypoxia are enhanced. In vitro and in vivo findings suggest this is partly explained by upregulation of nitric oxide (NO) synthesis by the vascular endothelium which facilitates vasodilatation induced by adenosine and other NO-dependent dilators and attenuates noradrenaline-evoked vasoconstriction.
Resumo:
Carbon monoxide (CO) is a pollutant commonly recognized for its toxicological attributes, including CNS and cardiovascular effects. But CO is also formed endogenously in mammalian tissues. Endogenously formed CO normally arises from heme degradation in a reaction catalyzed by heme oxygenase. While inhibitors of endogenous CO production can raise arterial pressure, heme loading can enhance CO production and lead to vasodepression. Both central and peripheral tissues possess heme oxygenases and generate CO from heme, but the inability of heme substrate to cross the blood brain barrier suggests the CNS heme-heme oxygenase-CO system may be independent of the periphery. In the CNS, CO apparently acts in the nucleus tractus solitarii (NTS) promoting changes in glutamatergic neurotransmission and lowering blood pressure. At the periphery, the heme-heme oxygenase-CO system can affect cardiovascular functions in a two-fold manner; specifically: 1) heme-derived CO generated within vascular smooth muscle (VSM) can promote vasodilation, but 2) its actions on the endothelium apparently can promote vasoconstriction. Thus, it seems reasonable that the CNS-, VSM- and endothelial-dependent actions of the heme-heme oxygenase-CO system may all affect cardiac output and vascular resistance, and subsequently blood pressure.
Resumo:
Gap junctions are clusters of intercellular channels directly connecting the cytoplasm of adjacent cells. These channels are formed by proteins named connexins and are present in all metazoan organisms where they serve diverse functions ranging from control of cell growth and differentiation to electric conduction in excitable tissues. In this overview we describe the presence of connexins in the cardiovascular and lympho-hematopoietic systems giving the reader a summary of the topics to be covered throughout this edition and a historical perspective of the discovery of gap junctions in the immune system.
Resumo:
Oxytocin (OT), a nonapeptide, was the first hormone to have its biological activities established and chemical structure determined. It was believed that OT is released from hypothalamic nerve terminals of the posterior hypophysis into the circulation where it stimulates uterine contractions during parturition, and milk ejection during lactation. However, equivalent concentrations of OT were found in the male hypophysis, and similar stimuli of OT release were determined for both sexes, suggesting other physiological functions. Indeed, recent studies indicate that OT is involved in cognition, tolerance, adaptation and complex sexual and maternal behaviour, as well as in the regulation of cardiovascular functions. It has long been known that OT induces natriuresis and causes a fall in mean arterial pressure, both after acute and chronic treatment, but the mechanism was not clear. The discovery of the natriuretic family shed new light on this matter. Atrial natriuretic peptide (ANP), a potent natriuretic and vasorelaxant hormone, originally isolated from rat atria, has been found at other sites, including the brain. Blood volume expansion causes ANP release that is believed to be important in the induction of natriuresis and diuresis, which in turn act to reduce the increase in blood volume. Neurohypophysectomy totally abolishes the ANP response to volume expansion. This indicates that one of the major hypophyseal peptides is responsible for ANP release. The role of ANP in OT-induced natriuresis was evaluated, and we hypothesized that the cardio-renal effects of OT are mediated by the release of ANP from the heart. To support this hypothesis, we have demonstrated the presence and synthesis of OT receptors in all heart compartments and the vasculature. The functionality of these receptors has been established by the ability of OT to induce ANP release from perfused heart or atrial slices. Furthermore, we have shown that the heart and large vessels like the aorta and vena cava are sites of OT synthesis. Therefore, locally produced OT may have important regulatory functions within the heart and vascular beds. Such functions may include slowing down of the heart or the regulation of local vascular tone.
Resumo:
There is a close association between the location of angiotensin (Ang) receptors and many important brain nuclei involved in the regulation of the cardiovascular system. The present review encompasses the physiological role of Ang II in the brainstem, particularly in relation to its influence on baroreflex control of the heart and kidney. Activation of AT1 receptors in the brainstem by fourth ventricle (4V) administration to conscious rabbits or local administration of Ang II into the rostral ventrolateral medulla (RVLM) of anesthetized rabbits acutely increases renal sympathetic nerve activity (RSNA) and RSNA baroreflex responses. Administration of the Ang antagonist Sarile into the RVLM of anesthetized rabbits blocked the effects of Ang II on the RSNA baroreflex, indicating that the RVLM is the major site of sympathoexcitatory action of Ang II given into the cerebrospinal fluid surrounding the brainstem. However, in conscious animals, blockade of endogenous Ang receptors in the brainstem by the 4V AT1 receptor antagonist losartan resulted in sympathoexcitation, suggesting an overall greater activity of endogenous Ang II within the sympathoinhibitory pathways. However, the RSNA response to airjet stress in conscious rabbits was markedly attenuated. While we found no effect of acute central Ang on heart rate baroreflexes, chronic 4V infusion inhibited the baroreflex and chronic losartan increased baroreflex gain. Thus, brainstem Ang II acutely alters sympathetic responses to specific afferent inputs thus forming part of a potentially important mechanism for the integration of autonomic response patterns. The sympathoexcitatory AT1 receptors appear to be activated during stress, surgery and anesthesia.