942 resultados para Free Boundary Value Problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies periodic traveling gravity waves at the free surface of water in a flow of constant vorticity over a flat bed. Using conformal mappings the free-boundary problem is transformed into a quasilinear pseudodifferential equation for a periodic function of one variable. The new formulation leads to a regularity result and, by use of bifurcation theory, to the existence of waves of small amplitude even in the presence of stagnation points in the flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyse the Dirichlet problem for the elliptic sine Gordon equation in the upper half plane. We express the solution $q(x,y)$ in terms of a Riemann-Hilbert problem whose jump matrix is uniquely defined by a certain function $b(\la)$, $\la\in\R$, explicitly expressed in terms of the given Dirichlet data $g_0(x)=q(x,0)$ and the unknown Neumann boundary value $g_1(x)=q_y(x,0)$, where $g_0(x)$ and $g_1(x)$ are related via the global relation $\{b(\la)=0$, $\la\geq 0\}$. Furthermore, we show that the latter relation can be used to characterise the Dirichlet to Neumann map, i.e. to express $g_1(x)$ in terms of $g_0(x)$. It appears that this provides the first case that such a map is explicitly characterised for a nonlinear integrable {\em elliptic} PDE, as opposed to an {\em evolution} PDE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-point difference scheme recently proposed in Ref. 1 for the numerical solution of a class of linear, singularly perturbed, two-point boundary-value problems is investigated. The scheme is derived from a first-order approximation to the original problem with a small deviating argument. It is shown here that, in the limit, as the deviating argument tends to zero, the difference scheme converges to a one-sided approximation to the original singularly perturbed equation in conservation form. The limiting scheme is shown to be stable on any uniform grid. Therefore, no advantage arises from using the deviating argument, and the most accurate and efficient results are obtained with the deviation at its zero limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we describe recent progress on the design, analysis and implementation of hybrid numerical-asymptotic boundary integral methods for boundary value problems for the Helmholtz equation that model time harmonic acoustic wave scattering in domains exterior to impenetrable obstacles. These hybrid methods combine conventional piecewise polynomial approximations with high-frequency asymptotics to build basis functions suitable for representing the oscillatory solutions. They have the potential to solve scattering problems accurately in a computation time that is (almost) independent of frequency and this has been realized for many model problems. The design and analysis of this class of methods requires new results on the analysis and numerical analysis of highly oscillatory boundary integral operators and on the high-frequency asymptotics of scattering problems. The implementation requires the development of appropriate quadrature rules for highly oscillatory integrals. This article contains a historical account of the development of this currently very active field, a detailed account of recent progress and, in addition, a number of original research results on the design, analysis and implementation of these methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a three-dimensional layer, composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Numerical solution of this three-dimensional evolution problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l, a situation which occurs frequently in the application to oil and gas reservoir recovery and which leads to significant stiffness in the numerical problem. Under the assumption that $\epsilon\propto h/l\ll 1$, we show that, to leading order in $\epsilon$, the pressure field varies only in the horizontal directions away from the wells (the outer region). We construct asymptotic expansions in $\epsilon$ in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive expressions for all significant process quantities. The only computations required are for the solution of non-stiff linear, elliptic, two-dimensional boundary-value, and eigenvalue problems. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the layer, $\epsilon$, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighbourhood of wells and away from wells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe some recent advances in the numerical solution of acoustic scattering problems. A major focus of the paper is the efficient solution of high frequency scattering problems via hybrid numerical-asymptotic boundary element methods. We also make connections to the unified transform method due to A. S. Fokas and co-authors, analysing particular instances of this method, proposed by J. A. De-Santo and co-authors, for problems of acoustic scattering by diffraction gratings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we prove new results concerning the existence and various properties of an evolution system U(A+B)(t, s)0 <= s <= t <= T generated by the sum -(A(t) + B(t)) of two linear, time-dependent, and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing L(B) for the algebra of all linear bounded operators on B, we can express U(A+B)(t, s)0 <= s <= t <= T as the strong limit in C(8) of a product of the holomorphic contraction semigroups generated by -A (t) and - B(t), respectively, thereby proving a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t) + B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND(t is an element of)[0,T] D(A(t) + B(t)) everywhere dense in B. We obtain a special case of our formula when B(t) = 0, which, in effect, allows us to reconstruct U(A)(t, s)0 <=(s)<=(t)<=(T) very simply in terms of the semigroup generated by -A(t). We then illustrate our results by considering various examples of nonautonomous parabolic initial-boundary value problems, including one related to the theory of timedependent singular perturbations of self-adjoint operators. We finally mention what we think remains an open problem for the corresponding equations of Schrodinger type in quantum mechanics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formal methods and software testing are tools to obtain and control software quality. When used together, they provide mechanisms for software specification, verification and error detection. Even though formal methods allow software to be mathematically verified, they are not enough to assure that a system is free of faults, thus, software testing techniques are necessary to complement the process of verification and validation of a system. Model Based Testing techniques allow tests to be generated from other software artifacts such as specifications and abstract models. Using formal specifications as basis for test creation, we can generate better quality tests, because these specifications are usually precise and free of ambiguity. Fernanda Souza (2009) proposed a method to define test cases from B Method specifications. This method used information from the machine s invariant and the operation s precondition to define positive and negative test cases for an operation, using equivalent class partitioning and boundary value analysis based techniques. However, the method proposed in 2009 was not automated and had conceptual deficiencies like, for instance, it did not fit in a well defined coverage criteria classification. We started our work with a case study that applied the method in an example of B specification from the industry. Based in this case study we ve obtained subsidies to improve it. In our work we evolved the proposed method, rewriting it and adding characteristics to make it compatible with a test classification used by the community. We also improved the method to support specifications structured in different components, to use information from the operation s behavior on the test case generation process and to use new coverage criterias. Besides, we have implemented a tool to automate the method and we have submitted it to more complex case studies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - This paper proposes an interpolating approach of the element-free Galerkin method (EFGM) coupled with a modified truncation scheme for solving Poisson's boundary value problems in domains involving material non-homogeneities. The suitability and efficiency of the proposed implementation are evaluated for a given set of test cases of electrostatic field in domains involving different material interfaces.Design/methodology/approach - the authors combined an interpolating approximation with a modified domain truncation scheme, which avoids additional techniques for enforcing the Dirichlet boundary conditions and for dealing with material interfaces usually employed in meshfree formulations.Findings - the local electric potential and field distributions were correctly described as well as the global quantities like the total potency and resistance. Since, the treatment of the material interfaces becomes practically the same for both the finite element method (FEM) and the proposed EFGM, FEM-oriented programs can, thus, be easily extended to provide EFGM approximations.Research limitations/implications - the robustness of the proposed formulation became evident from the error analyses of the local and global variables, including in the case of high-material discontinuity.Practical implications - the proposed approach has shown to be as robust as linear FEM. Thus, it becomes an attractive alternative, also because it avoids the use of additional techniques to deal with boundary/interface conditions commonly employed in meshfree formulations.Originality/value - This paper reintroduces the domain truncation in the EFGM context, but by using a set of interpolating shape functions the authors avoided the use of Lagrange multipliers as well Mathematics in Engineering high-material discontinuity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A time-dependent projection technique is used to treat the initial-value problem for self-interacting fermionic fields. On the basis of the general dynamics of the fields, we derive formal equations of kinetic-type for the set of one-body dynamical variables. A nonperturbative mean-field expansion can be written for these equations. We treat this expansion in lowest order, which corresponds to the Gaussian mean-field approximation, for a uniform system described by the chiral Gross-Neveu Hamiltonian. Standard stationary features of the model, such as dynamical mass generation due to chiral symmetry breaking and a phenomenon analogous to dimensional transmutation, are reobtained in this context. The mean-field time evolution of nonequilibrium initial states is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amundsenisen is an ice field, 80 km2 in area, located in Southern Spitsbergen, Svalbard. Radio-echo sounding measurements at 20 MHz show high intensity returns from a nearly flat basal reflector at four zones, all of them with ice thickness larger than 500m. These reflections suggest possible subglacial lakes. To determine whether basal liquid water is compatible with current pressure and temperature conditions, we aim at applying a thermo mechanical model with a free boundary at the bed defined as solution of a Stefan problem for the interface ice-subglaciallake. The complexity of the problem suggests the use of a bi-dimensional model, but this requires that well-defined flowlines across the zones with suspected subglacial lakes are available. We define these flow lines from the solution of a three-dimensional dynamical model, and this is the main goal of the present contribution. We apply a three-dimensional full-Stokes model of glacier dynamics to Amundsenisen icefield. We are mostly interested in the plateau zone of the icefield, so we introduce artificial vertical boundaries at the heads of the main outlet glaciers draining Amundsenisen. At these boundaries we set velocity boundary conditions. Velocities near the centres of the heads of the outlets are known from experimental measurements. The velocities at depth are calculated according to a SIA velocity-depth profile, and those at the rest of the transverse section are computed following Nye’s (1952) model. We select as southeastern boundary of the model domain an ice divide, where we set boundary conditions of zero horizontal velocities and zero vertical shear stresses. The upper boundary is a traction-free boundary. For the basal boundary conditions, on the zones of suspected subglacial lakes we set free-slip boundary conditions, while for the rest of the basal boundary we use a friction law linking the sliding velocity to the basal shear stress,in such a way that, contrary to the shallow ice approximation, the basal shear stress is not equal to the basal driving stress but rather part of the solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract?We consider a mathematical model related to the stationary regime of a plasma of fusion nuclear, magnetically confined in a Stellarator device. Using the geometric properties of the fusion device, a suitable system of coordinates and averaging methods, the mathematical problem may be reduced to a two dimensional free boundary problem of nonlocal type, where the corresponding differential equation is of the Grad?Shafranov type. The current balance within each flux magnetic gives us the possibility to define the third covariant magnetic field component with respect to the averaged poloidal flux function. We present here some numerical experiences and we give some numerical approach for the averaged poloidal flux and for the third covariant magnetic field component.