874 resultados para Forecasting Volatility
Resumo:
This thesis examines the impact of foreign exchange rate volatility to the extent of use of foreign currency derivatives. Especially the focus is on the impacts of 2008 global financial crisis. The crisis increased risk level in the capital markets greatly. The change in the currency derivatives use is analyzed by comparing means between different periods and in addition, by linear regression that enables to analyze the explanatory power of the model. The research data consists of financial statements figures from fiscal years 2006-2011 published by firms operating in traditional Finnish industrial sectors. Volatilities of the chosen three currency pairs is calculated from the daily fixing rates of ECB. Based on the volatility the sample period is divided into three sub-periods. The results suggest that increased FX market volatility did not increase the use foreign currency derivatives. Furthermore, the increased foreign exchange rate volatility did not increase the power of linear regression model to estimate the use foreign currency derivatives compared to previous studies.
Resumo:
The purpose of this thesis was to study the design of demand forecasting processes. A literature review in the field of forecasting was conducted, including general forecasting process design, forecasting methods and techniques, the role of human judgment in forecasting and forecasting performance measurement. The purpose of the literature review was to identify the important design choices that an organization aiming to design or re-design their demand forecasting process would have to make. In the empirical part of the study, these choices and the existing knowledge behind them was assessed in a case study where a demand forecasting process was re-designed for a company in the fast moving consumer goods business. The new target process is described, as well as the reasoning behind the design choices made during the re-design process. As a result, the most important design choices are highlighted, as well as their immediate effect on other processes directly tied to the demand forecasting process. Additionally, some new insights on the organizational aspects of demand forecasting processes are explored. The preliminary results indicate that in this case the new process did improve forecasting accuracy, although organizational issues related to the process proved to be more challenging than anticipated.
Resumo:
Several papers document idiosyncratic volatility is time-varying and many attempts have been made to reveal whether idiosyncratic risk is priced. This research studies behavior of idiosyncratic volatility around information release dates and also its relation with return after public announcement. The results indicate that when a company discloses specific information to the market, firm’s specific volatility level shifts and short-horizon event-induced volatility vary significantly however, the category to which the announcement belongs is not important in magnitude of change. This event-induced volatility is not small in size and should not be downplayed in event studies. Moreover, this study shows stocks with higher contemporaneous realized idiosyncratic volatility earn lower return after public announcement consistent with “divergence of opinion hypothesis”. While no significant relation is found between EGARCH estimated idiosyncratic volatility and return and also between one-month lagged idiosyncratic volatility and return presumably due to significant jump around public announcement both may provide some signals regarding future idiosyncratic volatility through their correlations with contemporaneous realized idiosyncratic volatility. Finally, the study show that positive relation between return and idiosyncratic volatility based on under-diversification is inadequate to explain all different scenarios and this negative relation after public announcement may provide a useful trading rule.
Resumo:
Frontier and Emerging economies have implemented policies with the objective of liberalizing their equity markets. Equity market liberalization opens the domestic equity market to foreign investors and as well paves the way for domestic investors to invest in foreign equity securities. Among other things, equity market liberalization results in diversification benefits. Moreover, equity market liberalization leads to low cost of equity capital resulting from the lower rate of return by investors. Additionally, foreign and local investors share any potential risks. Liberalized equity markets also become liquid considering that there are more investors to trade. Equity market liberalization results in financial integration which explains the movement of two markets. In crisis period, increased volatility and co-movement between two markets may result in what is termed contagion effects. In Africa, major moves toward financial liberalization generally started in the late 1980s with South Africa as the pioneer. Over the years, researchers have studied the impact of financial liberalization on Africa’s economic development with diverse results; some being positive, others negative and still others being mixed. The objective of this study is to establish whether African stock-markets are integrated into the United States (US) and World market. Furthermore, the study helps to see if there are international linkages between the Africa, US and the world markets. A Bivariate- VAR- GARCH- BEKK model is employed in the study. In the study, the effect of thin trading is removed through series of econometric data purification. This is because thin trading, also known as non-trading or inconsistency of trading, is a main feature of African markets and may trigger inconsistency and biased results. The study confirmed the widely established results that the South Africa and Egypt stock markets are highly integrated with the US and World market. Interestingly, the study adds to knowledge in this research area by establishing the fact that Kenya is very integrated with the US and World markets and that it receives and exports past innovations as well as shocks to and from the US and World market.
Resumo:
Electricity price forecasting has become an important area of research in the aftermath of the worldwide deregulation of the power industry that launched competitive electricity markets now embracing all market participants including generation and retail companies, transmission network providers, and market managers. Based on the needs of the market, a variety of approaches forecasting day-ahead electricity prices have been proposed over the last decades. However, most of the existing approaches are reasonably effective for normal range prices but disregard price spike events, which are caused by a number of complex factors and occur during periods of market stress. In the early research, price spikes were truncated before application of the forecasting model to reduce the influence of such observations on the estimation of the model parameters; otherwise, a very large forecast error would be generated on price spike occasions. Electricity price spikes, however, are significant for energy market participants to stay competitive in a market. Accurate price spike forecasting is important for generation companies to strategically bid into the market and to optimally manage their assets; for retailer companies, since they cannot pass the spikes onto final customers, and finally, for market managers to provide better management and planning for the energy market. This doctoral thesis aims at deriving a methodology able to accurately predict not only the day-ahead electricity prices within the normal range but also the price spikes. The Finnish day-ahead energy market of Nord Pool Spot is selected as the case market, and its structure is studied in detail. It is almost universally agreed in the forecasting literature that no single method is best in every situation. Since the real-world problems are often complex in nature, no single model is able to capture different patterns equally well. Therefore, a hybrid methodology that enhances the modeling capabilities appears to be a possibly productive strategy for practical use when electricity prices are predicted. The price forecasting methodology is proposed through a hybrid model applied to the price forecasting in the Finnish day-ahead energy market. The iterative search procedure employed within the methodology is developed to tune the model parameters and select the optimal input set of the explanatory variables. The numerical studies show that the proposed methodology has more accurate behavior than all other examined methods most recently applied to case studies of energy markets in different countries. The obtained results can be considered as providing extensive and useful information for participants of the day-ahead energy market, who have limited and uncertain information for price prediction to set up an optimal short-term operation portfolio. Although the focus of this work is primarily on the Finnish price area of Nord Pool Spot, given the result of this work, it is very likely that the same methodology will give good results when forecasting the prices on energy markets of other countries.
Resumo:
In this master’s thesis, wind speeds and directions were modeled with the aim of developing suitable models for hourly, daily, weekly and monthly forecasting. Artificial Neural Networks implemented in MATLAB software were used to perform the forecasts. Three main types of artificial neural network were built, namely: Feed forward neural networks, Jordan Elman neural networks and Cascade forward neural networks. Four sub models of each of these neural networks were also built, corresponding to the four forecast horizons, for both wind speeds and directions. A single neural network topology was used for each of the forecast horizons, regardless of the model type. All the models were then trained with real data of wind speeds and directions collected over a period of two years in the municipal region of Puumala in Finland. Only 70% of the data was used for training, validation and testing of the models, while the second last 15% of the data was presented to the trained models for verification. The model outputs were then compared to the last 15% of the original data, by measuring the mean square errors and sum square errors between them. Based on the results, the feed forward networks returned the lowest generalization errors for hourly, weekly and monthly forecasts of wind speeds; Jordan Elman networks returned the lowest errors when used for forecasting of daily wind speeds. Cascade forward networks gave the lowest errors when used for forecasting daily, weekly and monthly wind directions; Jordan Elman networks returned the lowest errors when used for hourly forecasting. The errors were relatively low during training of the models, but shot up upon simulation with new inputs. In addition, a combination of hyperbolic tangent transfer functions for both hidden and output layers returned better results compared to other combinations of transfer functions. In general, wind speeds were more predictable as compared to wind directions, opening up opportunities for further research into building better models for wind direction forecasting.
Resumo:
Volatilization represents an important process in the displacement of pesticides for the environment. The physicochemical properties of the clomazone molecule indicate its relative volatility. Therefore, this study was carried out to assess the volatilization of different clomazone herbicide formulations using bioindicator species. To that end, airtight glass boxes were used with the presence of different clomazone formulations and plant species. The formulations used were Gamit 360 CS(r), Gamit 500 EC(r) and Gamit Star(r). The plant species assessed were maize, sorghum and rice. With the results obtained it is possible to conclude that, among the formulations, Gamit 360 CS(r) has caused less phytotoxicity to the bioindicator species in comparison to the formulations of Gamit 500 EC(r) and Gamit Star(r) formulations. In general, The Gamit 500 EC(r) and Gamit Star(r) have not differed in the phytotoxicity potential for the bioindicator species.
Resumo:
The purpose of this thesis was to study the design of demand forecasting processes and management of demand. In literature review were different processes found and forecasting methods and techniques interviewed. Also role of bullwhip effect in supply chain was identified and how to manage it with information sharing operations. In the empirical part of study is at first described current situation and challenges in case company. After that will new way to handle demand introduced with target budget creation and how information sharing with 5 products and a few customers would bring benefits to company. Also the new S&OP process created within this study and organization for it.
Resumo:
The desire to create a statistical or mathematical model, which would allow predicting the future changes in stock prices, was born many years ago. Economists and mathematicians are trying to solve this task by applying statistical analysis and physical laws, but there are still no satisfactory results. The main reason for this is that a stock exchange is a non-stationary, unstable and complex system, which is influenced by many factors. In this thesis the New York Stock Exchange was considered as the system to be explored. A topological analysis, basic statistical tools and singular value decomposition were conducted for understanding the behavior of the market. Two methods for normalization of initial daily closure prices by Dow Jones and S&P500 were introduced and applied for further analysis. As a result, some unexpected features were identified, such as a shape of distribution of correlation matrix, a bulk of which is shifted to the right hand side with respect to zero. Also non-ergodicity of NYSE was confirmed graphically. It was shown, that singular vectors differ from each other by a constant factor. There are for certain results no clear conclusions from this work, but it creates a good basis for the further analysis of market topology.
Resumo:
Time series of hourly electricity spot prices have peculiar properties. Electricity is by its nature difficult to store and has to be available on demand. There are many reasons for wanting to understand correlations in price movements, e.g. risk management purposes. The entire analysis carried out in this thesis has been applied to the New Zealand nodal electricity prices: offer prices (from 29 May 2002 to 31 March 2009) and final prices (from 1 January 1999 to 31 March 2009). In this paper, such natural factors as location of the node and generation type in the node that effects the correlation between nodal prices have been reviewed. It was noticed that the geographical factor affects the correlation between nodes more than others. Therefore, the visualisation of correlated nodes was done. However, for the offer prices the clear separation of correlated and not correlated nodes was not obtained. Finally, it was concluded that location factor most strongly affects correlation of electricity nodal prices; problems in visualisation probably associated with power losses when the power is transmitted over long distance.
Resumo:
This research concerns different statistical methods that assist to increase the demand forecasting accuracy of company X’s forecasting model. Current forecasting process was analyzed in details. As a result, graphical scheme of logical algorithm was developed. Based on the analysis of the algorithm and forecasting errors, all the potential directions for model future improvements in context of its accuracy were gathered into the complete list. Three improvement directions were chosen for further practical research, on their basis, three test models were created and verified. Novelty of this work lies in the methodological approach of the original analysis of the model, which identified its critical points, as well as the uniqueness of the developed test models. Results of the study formed the basis of the grant of the Government of St. Petersburg.
Resumo:
Research has highlighted the adequacy of Markov regime-switching model to address dynamic behavior in long term stock market movements. Employing a purposed Extended regime-switching GARCH(1,1) model, this thesis further investigates the regime dependent nonlinear relationship between changes in oil price and stock market volatility in Saudi Arabia, Norway and Singapore for the period of 2001-2014. Market selection is prioritized to national dependency on oil export or import, which also rationalizes the fitness of implied bivariate volatility model. Among two regimes identified by the mean model, high stock market return-low volatility regime reflects the stable economic growth periods. The other regime characterized by low stock market return-high volatility coincides with episodes of recession and downturn. Moreover, results of volatility model provide the evidence that shocks in stock markets are less persistent during the high volatility regime. While accelerated oil price rises the stock market volatility during recessions, it reduces the stock market risk during normal growth periods in Singapore. In contrast, oil price showed no significant notable impact on stock market volatility of target oil-exporting countries in either of the volatility regime. In light to these results, international investors and policy makers could benefit the risk management in relation to oil price fluctuation.
Resumo:
Process management refers to improving the key functions of a company. The main functions of the case company - project management, procurement, finance, and human resource - use their own separate systems. The case company is in the process of changing its software. Different functions will use the same system in the future. This software change causes changes in some of the company’s processes. Project cash flow forecasting process is one of the changing processes. Cash flow forecasting ensures the sufficiency of money and prepares for possible changes in the future. This will help to ensure the company’s viability. The purpose of the research is to describe a new project cash flow forecasting process. In addition, the aim is to analyze the impacts of the process change, with regard to the project control department’s workload and resources through the process measurement, and how the impacts take the department’s future operations into account. The research is based on process management. Processes, their descriptions, and the way the process management uses the information, are discussed in the theory part of this research. The theory part is based on literature and articles. Project cash flow and forecasting-related benefits are also discussed. After this, the project cash flow forecasting as-is and to-be processes are described by utilizing information, obtained from the theoretical part, as well as the know-how of the project control department’s personnel. Written descriptions and cross-functional flowcharts are used for descriptions. Process measurement is based on interviews with the personnel – mainly cost controllers and department managers. The process change and the integration of two processes will allow work time for other things, for example, analysis of costs. In addition to the quality of the cash flow information will improve compared to the as-is process. Analyzing the department’s other main processes, department’s roles, and their responsibilities should be checked and redesigned. This way, there will be an opportunity to achieve the best possible efficiency and cost savings.
Resumo:
The main objective of this thesis was to study if the quantitative sales forecasting methods will enhance the accuracy of the sales forecast in comparison to qualitative sales forecasting method. A literature review in the field of forecasting was conducted, including general sales forecasting process, forecasting methods and techniques and forecasting accuracy measurement. In the empirical part of the study the accuracy of the forecasts provided by both qualitative and quantitative methods is being studied and compared in the case of short, medium and long term forecasts. The SAS® Forecast Server –tool was used in creating the quantitative forecasts.
Resumo:
The growing population in cities increases the energy demand and affects the environment by increasing carbon emissions. Information and communications technology solutions which enable energy optimization are needed to address this growing energy demand in cities and to reduce carbon emissions. District heating systems optimize the energy production by reusing waste energy with combined heat and power plants. Forecasting the heat load demand in residential buildings assists in optimizing energy production and consumption in a district heating system. However, the presence of a large number of factors such as weather forecast, district heating operational parameters and user behavioural parameters, make heat load forecasting a challenging task. This thesis proposes a probabilistic machine learning model using a Naive Bayes classifier, to forecast the hourly heat load demand for three residential buildings in the city of Skellefteå, Sweden over a period of winter and spring seasons. The district heating data collected from the sensors equipped at the residential buildings in Skellefteå, is utilized to build the Bayesian network to forecast the heat load demand for horizons of 1, 2, 3, 6 and 24 hours. The proposed model is validated by using four cases to study the influence of various parameters on the heat load forecast by carrying out trace driven analysis in Weka and GeNIe. Results show that current heat load consumption and outdoor temperature forecast are the two parameters with most influence on the heat load forecast. The proposed model achieves average accuracies of 81.23 % and 76.74 % for a forecast horizon of 1 hour in the three buildings for winter and spring seasons respectively. The model also achieves an average accuracy of 77.97 % for three buildings across both seasons for the forecast horizon of 1 hour by utilizing only 10 % of the training data. The results indicate that even a simple model like Naive Bayes classifier can forecast the heat load demand by utilizing less training data.