980 resultados para Enzymes production
Resumo:
Oxygenic photosynthetic organisms use solar energy to split water (H2O) into protons (H+), electrons (e(-)), and oxygen. A select group of photosynthetic microorganisms, including the green alga Chlamydomonas reinhardtii, has evolved the additional ability to redirect the derived H+ and e(-) to drive hydrogen (H-2) production via the chloroplast hydrogenases HydA1 and A2 (H(2)ase). This process occurs under anaerobic conditions and provides a biological basis for solar-driven H-2 production. However, its relatively poor yield is a major limitation for the economic viability of this process. To improve H-2 production in Chlamydomonas, we have developed a new approach to increase H+ and e(-) supply to the hydrogenases. In a first step, mutants blocked in the state 1 transition were selected. These mutants are inhibited in cyclic e(-) transfer around photosystem I, eliminating possible competition for e(-) with H(2)ase. Selected strains were further screened for increased H-2 production rates, leading to the isolation of Stm6. This strain has a modified respiratory metabolism, providing it with two additional important properties as follows: large starch reserves ( i.e. enhanced substrate availability), and a low dissolved O-2 concentration (40% of the wild type (WT)), resulting in reduced inhibition of H2ase activation. The H-2 production rates of Stm6 were 5 - 13 times that of the control WT strain over a range of conditions ( light intensity, culture time, +/- uncoupler). Typically, similar to 540 ml of H-2 liter(-1) culture ( up to 98% pure) were produced over a 10-14-day period at a maximal rate of 4 ml h(-1) ( efficiency = similar to 5 times the WT). Stm6 therefore represents an important step toward the development of future solar-powered H-2 production systems.
Resumo:
Microbial transglutaminase is favoured for use in industry over the mammalian isoform, and hence has been utilized, to great effect, as an applied biocatalyst in many industrial areas including the food and textiles industries. There are currently only a limited number of microbial TGase sources known. A number of organisms have been screened for transglutaminase activity using biochemical assays directed towards TGase catalyzed reactions (amine incorporation and peptide cross-linking assay). Of those organisms screened, TGase was identified in a number of isolates including members of the Bacillus and Streptomyces families. In addition, a protein capable of performing a TGase-like reaction was identified in the organism Pseudomonas putida that was deemed immunologically distinct from previously described TGase isoforms, though further work would be required to purify the protein responsible. The genuses Streptoverticillium and Streptomyces are known to be closely related. A number of micro-organisms relating to Streptomyces mobaraensis (formerly Streptoverticillium mobaraensis) have been identified as harboring a TGase enzyme. The exact biological role of Streptomyces TGase is not well understood, though from work undertaken here it would appear to be involved in cell wall growth. Comparison of the purified Streptomyces TGase proteins showed them to exhibit marginally different characteristics in relation to enzymatic activity and pH dependency upon comparison with Streptomyces mobaraensis TGase. In addition, TGase was identified in the organism Saccharomonospora viridis that was found to be genetically identical to that from S. mobaraensis raising questions about the enzymes dissemination in nature. TGase from S. baldaccii was found to be most diverse with respect to enzymatic characteristics whilst still retaining comparable E(y-glutamyl) lysine bond formation to S. mobaraensis TGase. As such S. baldaccii TGase was cloned into an expression vector enabling mass production of the enzyme thereby providing a viable alternative to S. mobaraensis TGase for many industrial processes.
Resumo:
Biodiesel is a renewable substitute fuel for petroleum diesel fuel which is made from nontoxic, biodegradable, renewable sources such as refined and used vegetable oils and animal fats. Biodiesel is produced by transesterification in which oil or fat is reacted with a monohydric alcohol in the presence of a catalyst. The process of transesterification is affected by the mode of reaction, molar ratio of alcohol to oil, type of alcohol, nature and amount of catalysts, reaction time, and temperature. Various studies have been carried out using different oils as the raw material and different alcohols (methanol, ethanol, butanol), as well as different catalysts, notably homogeneous ones such as sodium hydroxide, potassium hydroxide, sulfuric acid, and supercritical fluids or enzymes such as lipases. Recent research has focused on the application of heterogeneous catalysts to produce biodiesel, because of their environmental and economic advantages. This paper reviews the literature regarding both catalytic and noncatalytic production of biodiesel. Advantages and disadvantages of different methods and catalysts used are discussed. We also discuss the importance of developing a single catalyst for both esterification and transesterification reactions.
Resumo:
Mevalonate pathway is of important clinical, pharmaceutical and biotechnological relevance. However, lack of the understanding of the phosphorylation mechanism of the kinases in this pathway has limited rationally engineering the kinases in industry. Here the phosphorylation reaction mechanism of a representative kinase in the mevalonate pathway, phosphomevalonate kinase, was studied by using molecular dynamics and hybrid QM/MM methods. We find that a conserved residue (Ser106) is reorientated to anchor ATP via a stable H-bond interaction. In addition, Ser213 located on the α-helix at the catalytic site is repositioned to further approach the substrate, facilitating the proton transfer during the phosphorylation. Furthermore, we elucidate that Lys101 functions to neutralize the negative charge developed at the β-, γ-bridging oxygen atom of ATP during phosphoryl transfer. We demonstrate that the dissociative catalytic reaction occurs via a direct phosphorylation pathway. This is the first study on the phosphorylation mechanism of a mevalonate pathway kinase. The elucidation of the catalytic mechanism not only sheds light on the common catalytic mechanism of GHMP kinase superfamily, but also provides the structural basis for engineering the mevalonate pathway kinases to further exploit their applications in the production of a wide range of fine chemicals such as biofuels or pharmaceuticals.
Resumo:
The use of macroalgae (seaweed) as a potential source of biofuels has attracted considerable worldwide interest. Since brown algae, especially the giant kelp, grow very rapidly and contain considerable amounts of polysaccharides, coupled with low lignin content, they represent attractive candidates for bioconversion to ethanol through yeast fermentation processes. In the current study, powdered dried seaweeds (Ascophylum nodosum and Laminaria digitata) were pre-treated with dilute sulphuric acid and hydrolysed with commercially available enzymes to liberate fermentable sugars. Higher sugar concentrations were obtained from L. digitata compared with A. nodosum with glucose and rhamnose being the predominant sugars, respectively, liberated from these seaweeds. Fermentation of the resultant seaweed sugars was performed using two non-conventional yeast strains: Scheffersomyces (Pichia) stipitis and Kluyveromyces marxianus based on their abilities to utilise a wide range of sugars. Although the yields of ethanol were quite low (at around 6 g/L), macroalgal ethanol production was slightly higher using K. marxianus compared with S. stipitis. The results obtained demonstrate the feasibility of obtaining ethanol from brown algae using relatively straightforward bioprocess technology, together with non-conventional yeasts. Conversion efficiency of these non-conventional yeasts could be maximised by operating the fermentation process based on the physiological requirements of the yeasts.
Resumo:
Dissolving-grade pulps are commonly used for the production of cellulose derivatives and regenerated cellulose. High cellulose content, low content of non-cellulosic material, high brightness, a uniform molecular weight distribution and high cellulose reactivity are the key features that determine the quality of a dissolving pulp. The first part of this work was an optimization study regarding the application of selected enzymes in different stages of a new purification process recently developed in Novozymes for purifying an eucalypt Kraft pulp into dissolving pulp, as an alternative to the pre-hydrolysis kraft (PHK) process. In addition, a viscosity reduction was achieved by cellulase (endoglucanase) treatment in the beginning of the sequence, while the GH11 and GH10 xylanases contributed to boost the brightness of the final pulp. The second part of the work aimed at exploring different auxiliary enzyme activities together with a key xylanase towards further removal of recalcitrant hemicelluloses from a partially bleached Eucalypt Kraft pulp. The resistant fraction (ca. 6% xylan in pulp) was not hydrolysable by the different combinations of enzymes tested. Production of a dissolving pulp was successful when using a cold caustic extraction (CCE) stage in the end of the sequence O-X-DHCE-X-HCE-D-CCE. The application of enzymes improved process efficiency. The main requirements for the production of a dissolving pulp (suitable for viscose making) were fulfilled: 2,7% residual xylan, 92,4% of brightness, a viscosity within the values of a commercial dissolving pulp and increased reactivity.
Resumo:
The creation of thermostable enzymes has wide-ranging applications in industrial, scientific, and pharmaceutical settings. As various stabilization techniques exist, it is often unclear how to best proceed. To this end, we have redesigned Cel5A (HjCel5A) from Hypocrea jecorina (anamorph Trichoderma reesei) to comparatively evaluate several significantly divergent stabilization methods: 1) consensus design, 2) core repacking, 3) helix dipole stabilization, 4) FoldX ΔΔG approximations, 5) Triad ΔΔG approximations, and 6) entropy reduction through backbone stabilization. As several of these techniques require structural data, we initially solved the first crystal structure of HjCel5A to 2.05 Å. Results from the stabilization experiments demonstrate that consensus design works best at accurately predicting highly stabilizing and active mutations. FoldX and helix dipole stabilization, however, also performed well. Both methods rely on structural data and can reveal non-conserved, structure-dependent mutations with high fidelity. HjCel5A is a prime target for stabilization. Capable of cleaving cellulose strands from agricultural waste into fermentable sugars, this protein functions as the primary endoglucanase in an organism commonly used in the sustainable biofuels industry. Creating a long-lived, highly active thermostable HjCel5A would allow cellulose hydrolysis to proceed more efficiently, lowering production expenses. We employed information gleaned during the survey of stabilization techniques to generate HjCel5A variants demonstrating a 12-15 °C increase in the temperature at which 50% of the total activity persists, an 11-14 °C increase in optimal operating temperature, and a 60% increase over the maximal amount of hydrolysis achievable using the wild type enzyme. We anticipate that our comparative analysis of stabilization methods will prove useful in future thermostabilization experiments.
Resumo:
Hypertension is the major risk factor for coronary disease worldwide. Primary hypertension is idiopathic in origin but is thought to arise from multiple risk factors including genetic, lifestyle and environmental influences. Secondary hypertension has a more definite aetiology; its major single cause is primary aldosteronism (PA), the greatest proportion of which is caused by aldosteroneproducing adenoma (APA), where aldosterone is synthesized at high levels by an adenoma of the adrenal gland. There is strong evidence to show that high aldosterone levels cause adverse effects on cardiovascular, cerebrovascular, renal and other systems. Extensive studies have been conducted to analyse the role that regulation of CYP11B2, the gene encoding the aldosterone synthase enzyme plays in determining aldosterone production and the development of hypertension. One significant regulatory factor that has only recently emerged is microRNA (miRNA). miRNAs are small non-coding RNAs, synthesized by a series of enzymatic processes, that negatively regulate gene expression at the posttranscriptional level. Detection and manipulation of miRNA is now known to be a viable method in the treatment, prevention and prognosis of certain diseases. The aim of the present study was to identify miRNAs likely to have a role in the regulation of corticosteroid biosynthesis. To achieve this, the miRNA profile of APA and normal human adrenal tissue was compared, as was the H295R adrenocortical cell line model of adrenocortical function, under both basal conditions and following stimulation of aldosterone production. Key differentially-expressed miRNAs were then identified and bioinformatic tools used to identify likely mRNA targets and pathways for these miRNAs, several of which were investigated and validated using in vitro methods. The background to this study is set out in Chapter 1 of this thesis, followed by a description of the major technical methods employed in Chapter 2. Chapter 3 presents the first of the study results, analysing differences in miRNA profile between APA and normal human adrenal tissue. Microarray was implemented to detect the expression of miRNAs in these two tissue types and several miRNAs were found to vary significantly and consistently between them. Furthermore, members of several miRNA clusters exhibited similar changes in expression pattern between the two tissues e.g. members of cluster miR-29b-1 (miR-29a-3p and miR-29b-3p) and of cluster miR-29b-2 (miR-29b-3p and miR-29c- 3p) are downregulated in APA, while members of cluster let-7a-1 (let-7a-5p and let-7d-5p), cluster let-7a-3 (let-7a-5p and let-7b-5p) and cluster miR-134 (miR- 134 and miR-382) are upregulated. Further bioinformatic analysis explored the possible biological function of these miRNAs using Ingenuity® Systems Pathway Analysis software. This led to the identification of validated mRNAs already known to be targeted by these miRNAs, as well as the prediction of other mRNAs that are likely targets and which are involved in processes relevant to APA pathology including cholesterol synthesis (HMGCR) and corticosteroidogenesis (CYP11B2). It was therefore hypothesised that increases in miR-125a-5p or miR- 335-5p would reduce HMGCR and CYP11B2 expression. Chapter 4 describes the characterisation of H295R cells of different strains and sources (H295R Strain 1, 2, 3 and HAC 15). Expression of CYP11B2 was assessed following application of 3 different stimulants: Angio II, dbcAMP and KCl. The most responsive strain to stimulation was Strain 1 at lower passage numbers. Furthermore, H295R proliferation increased following Angio II stimulation. In Chapter 5, the hypothesis that increases in miR-125a-5p or miR-335-5p reduces HMGCR and CYP11B2 expression was tested using realtime quantitative RT-PCR and transfection of miRNA mimics and inhibitors into the H295R cell line model of adrenocortical function. In this way, miR-125a-5p and miR-335-5p were shown to downregulate CYP11B2 and HMGCR expression, thereby validating certain of the bioinformatic predictions generated in Chapter 3. The study of miRNA profile in the H295R cell lines was conducted in Chapter 6, analysing how it changes under conditions that increase aldosterone secretion, including stimulation Angiotensin II, potassium chloride or dibutyryl cAMP (as a substitute for adrenocorticotropic hormone). miRNA profiling identified 7 miRNAs that are consistently downregulated by all three stimuli relative to basal cells: miR-106a-5p, miR-154-3p, miR-17-5p, miR-196b-5p, miR-19a-3p, miR-20b- 5p and miR-766-3p. These miRNAs include those derived from cluster miR-106a- 5p/miR-20b-5p and cluster miR-17-5p/miR-19a-3p, each producing a single polycistronic transcript. IPA bioinformatic analysis was again applied to identify experimentally validated and predicted mRNA targets of these miRNAs and the key biological pathways likely to be affected. This predicted several interactions between miRNAs derived from cluster miR-17-5p/miR-19a-3p and important mRNAs involved in cholesterol biosynthesis: LDLR and ABCA1. These predictions were investigated by in vitro experiment. miR-17-5p/miR-106a-p and miR-20b-5p were found to be consistently downregulated by stimulation of aldosterone biosynthesis. Moreover, miR-766-3p was upregulation throughout. Furthermore, I was able to validate the downregulation of LDLR by miR-17 transfection, as predicted by IPA. In summary, this study identified key miRNAs that are differentially-expressed in vivo in cases of APA or in vitro following stimulation of aldosterone biosynthesis. The many possible biological actions these miRNAs could have were filtered by bioinformatic analysis and selected interactions validated in vitro. While direct actions of these miRNAs on steroidogenic enzymes were identified, cholesterol handling also emerged as an important target and may represent a useful point of intervention in future therapies designed to modulate aldosterone biosynthesis and reduce its harmful effects.