917 resultados para Elliptic Galaxies
Resumo:
The integrated elliptic flow of charged particles produced in Pb+Pb collisions at √sNN = 2.76 TeV has been measured with the ATLAS detector using data collected at the Large Hadron Collider. The anisotropy parameter, v2, was measured in the pseudorapidity range |η| ≤ 2.5 with the event-plane method. In order to include tracks with very low transverse momentum pT, thus reducing the uncertainty in v2 integrated over pT, a 1 μb−1 data sample recorded without a magnetic field in the tracking detectors is used. The centrality dependence of the integrated v2 is compared to other measurements obtained with higher pT thresholds. The integrated elliptic flow is weakly decreasing with |η|. The integrated v2 transformed to the rest frame of one of the colliding nuclei is compared to the lower-energy RHIC data.
Resumo:
In this paper we develop an adaptive procedure for the numerical solution of general, semilinear elliptic problems with possible singular perturbations. Our approach combines both prediction-type adaptive Newton methods and a linear adaptive finite element discretization (based on a robust a posteriori error analysis), thereby leading to a fully adaptive Newton–Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples
Resumo:
We prove exponential rates of convergence of hp-version discontinuous Galerkin (dG) interior penalty finite element methods for second-order elliptic problems with mixed Dirichlet-Neumann boundary conditions in axiparallel polyhedra. The dG discretizations are based on axiparallel, σ-geometric anisotropic meshes of mapped hexahedra and anisotropic polynomial degree distributions of μ-bounded variation. We consider piecewise analytic solutions which belong to a larger analytic class than those for the pure Dirichlet problem considered in [11, 12]. For such solutions, we establish the exponential convergence of a nonconforming dG interpolant given by local L 2 -projections on elements away from corners and edges, and by suitable local low-order quasi-interpolants on elements at corners and edges. Due to the appearance of non-homogeneous, weighted norms in the analytic regularity class, new arguments are introduced to bound the dG consistency errors in elements abutting on Neumann edges. The non-homogeneous norms also entail some crucial modifications of the stability and quasi-optimality proofs, as well as of the analysis for the anisotropic interpolation operators. The exponential convergence bounds for the dG interpolant constructed in this paper generalize the results of [11, 12] for the pure Dirichlet case.
Resumo:
We consider a mathematical model related to the stationary regime of a plasma magnetically confined in a Stellarator device in the nuclear fusion. The mathematical problem may be reduced to an nonlinear elliptic inverse nonlocal two dimensional free{boundary problem. The nonlinear terms involving the unknown functions of the problem and its rearrangement. Our main goal is to determinate the existence and the estimate on the location and size of region where the solution is nonnegative almost everywhere (corresponding to the plasma region in the physical model)
Resumo:
The linear instability of the three-dimensional boundary-layer over the HIFiRE-5 flight test geometry, i.e. a rounded-tip 2:1 elliptic cone, at Mach 7, has been analyzed through spatial BiGlobal analysis, in a effort to understand transition and accurately predict local heat loads on next-generation ight vehicles. The results at an intermediate axial section of the cone, Re x = 8x10 5, show three different families of spatially amplied linear global modes, the attachment-line and cross- ow modes known from earlier analyses, and a new global mode, peaking in the vicinity of the minor axis of the cone, termed \center-line mode". We discover that a sequence of symmetric and anti-symmetric centerline modes exist and, for the basic ow at hand, are maximally amplied around F* = 130kHz. The wavenumbers and spatial distribution of amplitude functions of the centerline modes are documented
Resumo:
Flows of relevance to new generation aerospace vehicles exist, which are weakly dependent on the streamwise direction and strongly dependent on the other two spatial directions, such as the flow around the (flattened) nose of the vehicle and the associated elliptic cone model. Exploiting these characteristics, a parabolic integration of the Navier-Stokes equations is more appropriate than solution of the full equations, resulting in the so-called Parabolic Navier-Stokes (PNS). This approach not only is the best candidate, in terms of computational efficiency and accuracy, for the computation of steady base flows with the appointed properties, but also permits performing instability analysis and laminar-turbulent transition studies a-posteriori to the base flow computation. This is to be contrasted with the alternative approach of using order-of-magnitude more expensive spatial Direct Numerical Simulations (DNS) for the description of the transition process. The PNS equations used here have been formulated for an arbitrary coordinate transformation and the spatial discretization is performed using a novel stable high-order finite-difference-based numerical scheme, ensuring the recovery of highly accurate solutions using modest computing resources. For verification purposes, the boundary layer solution around a circular cone at zero angle of attack is compared in the incompressible limit with theoretical profiles. Also, the recovered shock wave angle at supersonic conditions is compared with theoretical predictions in the same circular-base cone geometry. Finally, the entire flow field, including shock position and compressible boundary layer around a 2:1 elliptic cone is recovered at Mach numbers 3 and 4
Resumo:
We study a parabolic–elliptic chemotactic system describing the evolution of a population’s density “u” and a chemoattractant’s concentration “v”. The system considers a non-constant chemotactic sensitivity given by “χ(N−u)”, for N≥0, and a source term of logistic type “λu(1−u)”. The existence of global bounded classical solutions is proved for any χ>0, N≥0 and λ≥0. By using a comparison argument we analyze the stability of the constant steady state u=1, v=1, for a range of parameters. – For N>1 and Nλ>2χ, any positive and bounded solution converges to the steady state. – For N≤1 the steady state is locally asymptotically stable and for χN<λ, the steady state is globally asymptotically stable.
Resumo:
In this paper, a model (called the elliptic model) is proposed to estimate the number of social ties between two locations using population data in a similar manner to how transportation research deals with trips. To overcome the asymmetry of transportation models, the new model considers that the number of relationships between two locations is inversely proportional to the population in the ellipse whose foci are in these two locations. The elliptic model is evaluated by considering the anonymous communications patterns of 25 million users from three different countries, where a location has been assigned to each user based on their most used phone tower or billing zip code. With this information, spatial social networks are built at three levels of resolution: tower, city and region for each of the three countries. The elliptic model achieves a similar performance when predicting communication fluxes as transportation models do when predicting trips. This shows that human relationships are influenced at least as much by geography as is human mobility.
Resumo:
The extension of DROMO formulation to relative motion is evaluated. The orbit of the follower spacecraft can be constructed through differences on the elements defining the orbit of the leader spacecraft. Assuming that the differences are small, the problemis linearized. Typical linearized solutions to relativemotion determine the relative state of the follower spacecraft at a certain time step. Because of the form of DROMO formulation, the performance of a frozen-anomaly transformation is explored. In this case, the relative state is computed for a certain value of the anomaly, equal for leader and follower. Since the time for leader and follower do not coincide, the implicit time delay needs to be corrected to recover the physical sense of the solution. When determining the relative orbit, numerical testing shows significant error reductions compared to previous linearized solutions.
Resumo:
The physical validity of the hypothesis of (redshift-dependent) luminosity evolution in galaxies is tested by statistical analysis of an intensively studied complete high-redshift sample of normal galaxies. The necessity of the evolution hypothesis in the frame of big-bang cosmology is confirmed at a high level of statistical significance; however, this evolution is quantitatively just as predicted by chronometric cosmology, in which there is no such evolution. Since there is no direct observational means to establish the evolution postulated in big-bang studies of higher-redshift galaxies, and the chronometric predictions involve no adjustable parameters (in contrast to the two in big-bang cosmology), the hypothesized evolution appears from the standpoint of conservative scientific methodology as a possible theoretical artifact.
Resumo:
In this paper, we give two infinite families of explicit exact formulas that generalize Jacobi’s (1829) 4 and 8 squares identities to 4n2 or 4n(n + 1) squares, respectively, without using cusp forms. Our 24 squares identity leads to a different formula for Ramanujan’s tau function τ(n), when n is odd. These results arise in the setting of Jacobi elliptic functions, Jacobi continued fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. We have also obtained many additional infinite families of identities in this same setting that are analogous to the η-function identities in appendix I of Macdonald’s work [Macdonald, I. G. (1972) Invent. Math. 15, 91–143]. A special case of our methods yields a proof of the two conjectured [Kac, V. G. and Wakimoto, M. (1994) in Progress in Mathematics, eds. Brylinski, J.-L., Brylinski, R., Guillemin, V. & Kac, V. (Birkhäuser Boston, Boston, MA), Vol. 123, pp. 415–456] identities involving representing a positive integer by sums of 4n2 or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson’s Cℓ nonterminating 6φ5 summation theorem, and Andrews’ basic hypergeometric series proof of Jacobi’s 4 and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n2 or n(n + 1) squares, respectively. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Kac and Wakimoto, and many others.
Resumo:
We combine infinite dimensional analysis (in particular a priori estimates and twist positivity) with classical geometric structures, supersymmetry, and noncommutative geometry. We establish the existence of a family of examples of two-dimensional, twist quantum fields. We evaluate the elliptic genus in these examples. We demonstrate a hidden SL(2,ℤ) symmetry of the elliptic genus, as suggested by Witten.
Resumo:
Fix an isogeny class
Resumo:
It is now straightforward to assemble large samples of very high redshift (z ∼ 3) field galaxies selected by their pronounced spectral discontinuity at the rest frame Lyman limit of hydrogen (at 912 Å). This makes possible both statistical analyses of the properties of the galaxies and the first direct glimpse of the progression of the growth of their large-scale distribution at such an early epoch. Here I present a summary of the progress made in these areas to date and some preliminary results of and future plans for a targeted redshift survey at z = 2.7–3.4. Also discussed is how the same discovery method may be used to obtain a “census” of star formation in the high redshift Universe, and the current implications for the history of galaxy formation as a function of cosmic epoch.