On a parabolic-elliptic chemotactic system with non-constant chemotactic sensitivity
Data(s) |
01/03/2013
|
---|---|
Resumo |
We study a parabolic–elliptic chemotactic system describing the evolution of a population’s density “u” and a chemoattractant’s concentration “v”. The system considers a non-constant chemotactic sensitivity given by “χ(N−u)”, for N≥0, and a source term of logistic type “λu(1−u)”. The existence of global bounded classical solutions is proved for any χ>0, N≥0 and λ≥0. By using a comparison argument we analyze the stability of the constant steady state u=1, v=1, for a range of parameters. – For N>1 and Nλ>2χ, any positive and bounded solution converges to the steady state. – For N≤1 the steady state is locally asymptotically stable and for χN<λ, the steady state is globally asymptotically stable. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
eng |
Publicador |
E.U. de Informática (UPM) |
Relação |
http://oa.upm.es/33253/1/INVE_MEM_2013_169542.pdf http://www.sciencedirect.com/science/article/pii/S0362546X12004567 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2012.12.004 |
Direitos |
http://creativecommons.org/licenses/by-nc-nd/3.0/es/ info:eu-repo/semantics/openAccess |
Fonte |
Nonlinear Analysis: Theory, Methods & Applications, ISSN 0362-546X, 2013-03, Vol. 80, No. null |
Palavras-Chave | #Biología #Matemáticas |
Tipo |
info:eu-repo/semantics/article Artículo PeerReviewed |