894 resultados para EFFECTIVE-MASS THEORY
Resumo:
The subject of this thesis is the measurement and interpretation of thermopower in high-mobility two-dimensional electron systems (2DESs). These 2DESs are realized within state-of-the-art GaAs/AlGaAs heterostructures that are cooled to temperatures as low as T = 20 mK. Much of this work takes place within strong magnetic fields where the single-particle density of states quantizes into discrete Landau levels (LLs), a regime best known for the quantum Hall effect (QHE). In addition, we review a novel hot-electron technique for measuring thermopower of 2DESs that dramatically reduces the influence of phonon drag.
Early chapters concentrate on experimental materials and methods. A brief overview of GaAs/AlGaAs heterostructures and device fabrication is followed by details of our cryogenic setup. Next, we provide a primer on thermopower that focuses on 2DESs at low temperatures. We then review our experimental devices, temperature calibration methods, as well as measurement circuits and protocols.
Latter chapters focus on the physics and thermopower results in the QHE regime. After reviewing the basic phenomena associated with the QHE, we discuss thermopower in this regime. Emphasis is given to the relationship between diffusion thermopower and entropy. Experimental results demonstrate this relationship persists well into the fractional quantum Hall (FQH) regime.
Several experimental results are reviewed. Unprecedented observations of the diffusion thermopower of a high-mobility 2DES at temperatures as high as T = 2 K are achieved using our hot-electron technique. The composite fermion (CF) effective mass is extracted from measurements of thermopower at LL filling factor ν = 3/2. The thermopower versus magnetic field in the FQH regime is shown to be qualitatively consistent with a simple entropic model of CFs. The thermopower at ν = 5/2 is shown to be quantitatively consistent with the presence of non-Abelian anyons. An abrupt collapse of thermopower is observed at the onset of the reentrant integer quantum Hall effect (RIQHE). And the thermopower at temperatures just above the RIQHE transition suggests the existence of an unconventional conducting phase.
Resumo:
A experiência dos engenheiros estruturais e os conhecimentos adquiridos pelo uso de materiais e novas tecnologias, têm ocasionado estruturas de aço e mistas (aço-concreto) de passarelas cada vez mais ousadas. Este fato tem gerado estruturas de passarelas esbeltas, e consequentemente, alterando os seus estados de limite de serviço e último associados ao seu projeto. Uma consequência direta desta tendência de projeto é o aumento considerável das vibrações das estruturas. Portanto, a presente investigação foi realizada com base em um modelo de carregamento mais realista, desenvolvido para incorporar os efeitos dinâmicos induzidos pela caminhada de pessoas. O modelo de carregamento considera a subida e a descida da massa efetiva do corpo em cada passo. A posição da carga dinâmica também foi alterada de acordo com a posição do pedestre sobre a estrutura e a função do tempo gerada, possui uma variação espacial e temporal. O efeito do calcanhar do pedestre também foi incorporado na análise. O modelo estrutural investigado baseia-se em uma passarela tubular (aço-concreto), medindo 82,5m. A estrutura é composta por três vãos (32,5 m, 20,0 m e 17,5 m, respectivamente) e dois balanços (7,5 m e 5,0 m, respectivamente). O sistema estrutural é constituído por perfis de aço tubular e uma laje de concreto, e é atualmente utilizada para travessia de pedestres. Esta investigação é realizada com base em resultados experimentais, relacionando a resposta dinâmica da passarela com as obtidas via modelos de elementos finitos. O modelo computacional proposto adota as técnicas de refinamento de malha, usualmente presente em simulações pelo método de elementos finitos. O modelo de elementos finitos foi desenvolvido e validado com resultados experimentais. Este modelo de passarela tubular permitiu uma avaliação dinâmica completa, investigando especialmente ao conforto humano e seus limites de utilização associados à vibração. A resposta dinâmica do sistema, em termos de acelerações de pico, foi obtida e comparada com os valores limites propostos por diversos autores e padrões de projeto. As acelerações de pico encontradas na presente análise indicou que a passarela tubular investigada apresentou problemas relacionados com o conforto humano. Por isso, foi detectado que este tipo de estrutura pode atingir níveis de vibrações excessivas que podem comprometer o conforto do usuário na passarela e especialmente a sua segurança.
Resumo:
We deliver the general conditions on the synthetic proportions for a homogeneous mixture of ferro- and nonmagnetic substances to become left-handed. As an alternative for left-handed metamaterials, we consider mixing ferromagnetic materials with nonmagnetic microscopic particles. In the mixture, the ferromagnetic material provides the needed permeability via domain wall resonances at high frequencies, whereas the nonmagnetic material gives the required permittivity. Using the effective medium theory, we have found that when the concentration of the nonmagnetic particles falls into a certain range, the refractive index of the mixture is negative, n < 0, which includes the double negative ( epsilon < 0 and mu < 0) and other cases ( e. g. epsilon < 0 and mu > 0). We finally give the requirements on the microscopic material properties for the ferromagnetic materials to reach the domain wall resonances at high frequencies.
Resumo:
Effective medium theory is useful for designing optical elements with form birefringent subwavelength structures. Thin films fabricated by oblique deposition are similar to the two-dimensional surface relief subwavelength gratings. We use the effective medium theory to calculate the anisotropic optical properties of the thin films with oblique columnar structures. The effective refractive indices and the directions are calculated from effective medium theory. It is shown that optical thin films with predetermined refractive indices and birefringence may be engineered.
Resumo:
The antireflection properties of triangular shaped gratings are studied by a combination of the effective medium theory and the anisotropic thin-film theory. The triangular shaped structures are analyzed as a function of grating period, filling factor, and groove depth, and the antireflective characteristics are also studied when visible-infrared light is incident upon them. Numerical examples are given for gratings on glass substrate with refractive index of 1.5. The results show that this kind of grating is capable of reducing reflections, and could achieve very low reflectivity over a wide field of view and a wide waveband by choosing appropriate parameters.
Resumo:
In this paper, a new type of resonant Brewster filters (RBF) with surface relief structure for the multiple channels is first presented by using the rigorous coupled-wave analysis and the S-matrix method. By tuning the depth of homogeneous layer which is under the surface relief structure, the multiple channels phenomenon is obtained. Long range, extremely low sidebands and multiple channels are found when the RBF with surface relief structure is illuminated with Transverse Magnetic incident polarization light near the Brewster angle calculated with the effective media theory of sub wavelength grating. Moreover, the wavelengths of RBF with surface relief structure can be easily shifted by changing the depth of homogeneous layer while its optical properties such as low sideband reflection and narrow band are not spoiled when the depth is changed. Furthermore, the variation of the grating thickness does not effectively change the resonant wavelength of RBF, but have a remarkable effect on its line width, which is very useful for designing such filters with different line widths at desired wavelength.
Resumo:
导模共振滤波器由于其高峰值反射率,低旁带反射,窄带以及带宽可控等优良特性引起了人们极大的关注,采用亚波长光栅的导模共振效应可以实现传统基于高低折射率介质的多层膜滤波器所无法实现的特殊功能,在弱调制模式下,其共振带宽可以被压缩到零点几纳米,但是由于介质表面和空气层的菲涅耳反射,使得偏离或者远离共振区时的反射率偏高,根据等效介质理论,亚波长光栅在远离共振区可以被看为均匀的薄膜,本文通过对导模共振光栅进行单层、双层以及三层抗反射设计,有效的降低了导模共振光栅的旁带反射率,从而在可见光波段获得了性能优良的共振滤波器.
Resumo:
A Pd-contacted dopant-free CNTFET with small-diameter (0.57 nm) carbon nanotube showing an anomalous n-type electrical characteristic is reported for the first time. This observed behaviour is attributed to a carbon nanotube work function higher than (or close to) palladium as well as a large hole-to-electron effective mass ratio of approximately 2.5 predicted by hybridization in small-diameter nanotubes. A variation of the conduction type with temperature is also observed and is attributed to an increase of the palladium work function and decrease of the CNT work function with increasing temperature.
Resumo:
A variety of hydrogenated and non-hydrogenated amorphous carbon thin films have been characterized by means of grazing-incidence X-ray reflectivity (XRR) to give information about their density, thickness, surface roughness and layering. We used XRR to validate the density of ta-C, ta-C:H and a-C:H films derived from the valence plasmon in electron energy loss spectroscopy measurements, up to 3.26 and 2.39 g/cm3 for ta-C and ta-C:H, respectively. By comparing XRR and electron energy loss spectroscopy (EELS) data, we have been able for the first time to fit a common electron effective mass of m*/me = 0.87 for all amorphous carbons and diamond, validating the `quasi-free' electron approach to density from valence plasmon energy. While hydrogenated films are found to be substantially uniform in density across the film, ta-C films grown by the filtered cathodic vacuum arc (FCVA) show a multilayer structure. However, ta-C films grown with an S-bend filter show a high uniformity and only a slight dependence on the substrate bias of both sp3 and layering.
Resumo:
The circumstances are investigated under which high peak acceleration can occur in the internal parts of a system when subjected to impulsive driving on the outside. Previous work using a coupled beam model has highlighted the importance of veering pairs of modes. Such a veering pair can be approximated by a lumped system with two degrees of freedom. The worst case of acceleration amplification is shown to occur when the two oscillators are tuned to the same frequency, and for this case closed-form expressions are derived to show the parameter dependence of the acceleration ratio on the mass ratio and coupling strength. Sensitivity analysis of the eigenvalues and eigenvectors indicates that mass ratio is the most sensitive parameter for altering the veering behaviour in an undamped system. Non-proportional damping is also shown to have a strong influence on the veering behaviour. The study gives design guidelines to allow permissible acceleration levels to be achieved by the choice of the effective mass and damping of the indirectly driven subsystem relative to the directly driven subsystem. © 2013 Elsevier Ltd.
Resumo:
Using effective-mass Hamiltonian model of semiconductors quantum well structures, we investigate the electronic structures of the Gamma-conduction and L-conduction subbands of GeSn/GeSiSn strained quantum well structure with an arbitrary composition. Our theoretical model suggests that the band structure could be widely modified to be type I, negative-gap or indirect-gap type II quantum well by changing the mole fraction of alpha-Sn and Si in the well and barrier layers, respectively. The optical gain spectrum in the type I quantum well system is calculated, taking into account the electrons leakage from the Gamma-valley to L-valley of the conduction band. We found that by increasing the mole fraction of alpha-Sn in the barrier layer and not in the well layer, an increase in the tensile strain effect can significantly enhance the transition probability, and a decrease in Si composition in the barrier layer, which lowers the band edge of Gamma-conduction subbands, also comes to a larger optical gain.
Resumo:
The electronic structure and Lande electron g-factors of manganese-doped HgTe quantum spheres are investigated, in the framework of the eight-band effective-mass model and the mean-field approximation. It is found that the electronic structure evolves continuously from the zero-gap configuration to an open-gap configuration with decreasing radius. The size dependence of electron g-factors is calculated with different Mn-doped effective concentration, magnetic field, and temperature values, respectively. It is found that the variations of electron g-factors are quite different for small and large quantum spheres, due to the strong exchange-induced interaction and spin-orbit coupling in the narrow-gap DMS nanocrystals. The electron g-factors are zero at a critical point of spherical radius R-c; however, by modulating the nanocrystal size their absolute values can be turned to be even 400 times larger than those in undoped cases. Copyright (c) EPLA, 2008.
Resumo:
The Rashba spin splitting of the minibands of coupled InAs/GaAs pyramid quantum dots is investigated using the k center dot p method and valence force field model. The Rashba splitting of the two dimensional miniband in the lateral directions is found due to the structure inversion asymmetry in the vertical direction while the miniband in the vertical direction has no Rashba spin splitting. As the space between dots increases, the Rashba coefficients decrease and the conduction-band effective mass increases. This Rashba spin splitting of the minibands will significantly affect the spin transport properties between quantum dots. (C) 2008 American Institute of Physics.
Resumo:
In this paper, how the dots' radius, At concentration and external electric field affect the single electron energy states in GaAs/AlxGa1-xAs spherical quantum dots are discussed in detail. Furthermore, the modification of the energy states is calculated when the difference in effective electron mass in GaAs and AlxGa1-xAs are considered. In addition, both the analytical method and the plane wave method are used in calculation and the results are compared, showing that they are in good agreement with each other. The results and methods can provide useful information for the future research and potential applications of quantum dots.
Resumo:
The distribution of energy levels of the ground state and the low-lying excited states of hydrogenic impurities in InAs quantum ring was investigated by applying the effective mass approximation and the perturbation method. In 2D polar coordinates, the exact solution to the Schrodinger equation was used to calculate the perturbation integral in a parabolic confinement potential. The numerical results show that the energy levels of electron are sensitively dependent on the radius of the quantum ring and a minimum exists on account of the parabolic confinement potential. With decreasing the radius, the energy spacing between energy levels increases. The degenerate energy levels of the first excited state for hydrogenic impurities are not relieved, and when the degenerate energy levels are split and the energy spacing will increase with the increase in the radius. The energy spacing between energy levels of electron is also sensitively dependent on the angular frequency and will increase with the increases in it. The degenerate energy levels of the first excited state are not relieved. The degenerate energy levels of the second excited state are relieved partially. The change in angular frequency will have a profound effect upon the calculation of the energy levels of the ground state and the low-lying excited states of hydrogenic impurities in InAs quantum ring. The conclusions of this paper will provide important guidance to investigating the optical transitions and spectral structures in quantum ring.