470 resultados para Controlador
Resumo:
Os veículos movidos com combustíveis fósseis são, hoje em dia, os veículos mais utilizados em transportes. Estes meios de transporte caracterizam-se pelo seu baixo rendimento e por serem poluentes, pelo que, nos últimos anos, tem havido um esforço em criar ou melhorar meios de transporte, através do aumento do seu rendimento e eliminando a emissão de poluentes. A utilização de máquinas elétricas como meio de locomoção é uma das soluções alternativas, uma vez que, estas apresentam um rendimento elevado e não emitem diretamente gases tóxicos, apesar das baterias serem uma das principais dificuldades, no que diz respeito à relação peso/densidade de energia. Por outro lado, as baterias, devido à sua capacidade de armazenamento de energia, podem ser utilizadas para armazenar energia da rede elétrica, contribuindo para uma melhor gestão, e também para armazenar num veículo elétrico a energia gerada em modo de travagem e que posteriormente pode ser utilizada para fazer mover o motor elétrico. Neste trabalho fez-se um projeto de um veículo elétrico (VE) e estudou-se o impacto da utilização em massa de veículos elétricos na gestão da rede de energia elétrica. A verificação experimental fez-se com um conversor DC/DC bidirecional com uma configuração em ponte H e com um conversor DC/DC redutor unidirecional. Utilizaram-se compensadores clássicos para, em malha fechada, regular o binário, a velocidade e a corrente, através de compensadores Proporcional Integrativo (PI) e Proporcional Integrativo Derivativo (PID). No desenvolvimento deste projeto, fez-se uma análise teórica, realizaram-se simulações na ferramenta MATLAB/Simulink onde foram criados modelos do veículo elétrico para verificar o seu comportamento, e seguidamente analisaram-se experimentalmente estes resultados. O controlo deste veículo foi feito com a utilização de microcontroladores de baixo custo, recorrendo a uma arquitetura de processamento distribuído/partilhado, constituindo esse estudo uma nova contribuição. Os resultados demonstraram que o rendimento dos veículos elétricos em média encontram-se nos 85-90 %, superior aos atuais 40% dos veículos a combustão interna, eliminando também a emissão de poluentes.
concepções de administração e administrador em tempos de capitalismo flexível: uma abordagem crítica
Resumo:
A tese trata de dois construtos sócio-históricos Administração e Administrador em face do capitalismo em sua fase flexível. Considerando as mudanças do capitalismo, o texto estabelece como objeto de estudo as concepções de Administração e Administrador, para o campo administrativo, na contemporaneidade. A tese é suportada por uma pesquisa de campo cujo objetivo foi compreender criticamente as concepções do campo administrativo sobre a Administração e o Administrador, em tempos de capitalismo flexível. Epistemologicamente, a pesquisa foi conduzida a partir da perspectiva crítica frankfurtiana, fundamentada em três pares categóricos dialéticos: (i) história versus naturalização; (ii) práxis social versus sistema; e (iii) alienação versus emancipação; privilegiando o pensamento crítico vinculado à primeira geração da Escola de Frankfurt. A literatura prevalente da área de Administração foi revisada mediada pelas duas questões ontológicas que suportam a tese: O que é Administração? e O que é Administrador? para autores como Taylor, Fayol, Drucker, Ohno, Deming, Champy e Mintzberg. Metodologicamente, foi realizada uma pesquisa integralmente qualitativa, com uso de três tipos de entrevistas: (i) entrevista narrativa com história de vida; (ii) entrevista com uso de elementos-estímulo; e (iii) entrevista narrativa ficcional. Para compreensão das narrativas, foi utilizada a técnica de análise hermenêutico-dialética. Os resultados indicam o predomínio da concepção pragmática-instrumental, no tocante à Administração, pela qual ela continua a ser pensada e discursada como uma ação tecnológica e teleológica, que utiliza saberes múltiplos e aprendizagens cambiantes como meios para alcance das finalidades do contexto organizacional mutante. Com relação ao Administrador, há a emergência da concepção estética para apresentá-lo, quando vinculado às organizações. Por esta concepção, há a migração do histórico estereótipo do Administrador controlador e vigilante para a representação do Administrador como um profissional performático. O segundo resultado, que se apresenta como o mais relevante em relação ao Administrador, é o da fuga da profissão. A partir dos pares categóricos dialéticos, esta tese propõe algumas sínteses provisórias críticas: (i) história-naturalização: os sujeitos tomam como naturais a organização empresarial e suas demandas, naturalizando as recentes mudanças que, entre outras coisas, reduzem os postos gerenciais; (ii) práxis social-sistema: pela concepção pragmática-instrumental, as experiências dos Administradores são concebidas a partir do confinamento funcionalista em uma organização-sistema; (iii) emancipação-alienação: tanto a forma naturalizada com que especificam as organizações e sua Administração quanto a práxis interrompida velada em uma experiência reificada mostram-se como fenômenos intrinsecamente e subjetivamente alienantes e contraemancipatórios. Por outro lado, através do movimento de fuga da profissão, os entrevistados parecem (re)significar o silêncio fundador da alienação associada à condição de Administrador: a de pensar como capital, e não se pensar como trabalho. Finalmente, o texto propõe que as possibilidades de emancipação deste profissional residem na tomada de consciência de sua condição como integrante da classe trabalhadora, mesmo em tempos de riscos e incertezas. Assumindo-se como trabalhador, o Administrador poderá lutar pelo seu trabalho, repensando-o em novos termos, em que as dimensões pragmáticas-instrumentais que envolvem sua profissão possam ser dosadas e sempre mediadas por conteúdos substantivos e emancipatórios
Resumo:
This work presents a proposal to detect interface in atmospheric oil tanks by installing a differential pressure level transmitter to infer the oil-water interface. The main goal of this project is to maximize the quantity of free water that is delivered to the drainage line by controlling the interface. A Fuzzy Controller has been implemented by using the interface transmitter as the Process Variable. Two ladder routine was generated to perform the control. One routine was developed to calculate the error and error variation. The other was generate to develop the fuzzy controller itself. By using rules, the fuzzy controller uses these variables to set the output. The output is the position variation of the drainage valve. Although the ladder routine was implemented into an Allen Bradley PLC, Control Logix family it can be implemented into any brand of PLCs
Resumo:
The use of infrared burners in industrial applications has many advantages in terms of technical-operational, for example, uniformity in the heat supply in the form of radiation and convection, with greater control of emissions due to the passage of exhaust gases through a macro-porous ceramic bed. This paper presents an infrared burner commercial, which was adapted an experimental ejector, capable of promoting a mixture of liquefied petroleum gas (LPG) and glycerin. By varying the percentage of dual-fuel, it was evaluated the performance of the infrared burner by performing an energy balance and atmospheric emissions. It was introduced a temperature controller with thermocouple modulating two-stage (low heat / high heat), using solenoid valves for each fuel. The infrared burner has been tested and tests by varying the amount of glycerin inserted by a gravity feed system. The method of thermodynamic analysis to estimate the load was used an aluminum plate located at the exit of combustion gases and the distribution of temperatures measured by a data acquisition system which recorded real-time measurements of the thermocouples attached. The burner had a stable combustion at levels of 15, 20 and 25% of adding glycerin in mass ratio of LPG gas, increasing the supply of heat to the plate. According to data obtained showed that there was an improvement in the efficiency of the 1st Law of infrared burner with increasing addition of glycerin. The emission levels of greenhouse gases produced by combustion (CO, NOx, SO2 and HC) met the environmental limits set by resolution No. 382/2006 of CONAMA
Resumo:
The primary cementing is an important step in the oilwell drilling process, ensuring the mechanical stability of the well and the hydraulic isolation between casing and formation. For slurries to meet the requirements for application in a certain well, some care in the project should be taken into account to obtain a cement paste with the proper composition. In most cases, it is necessary to add chemicals to the cement to modify its properties, according to the operation conditions and thus obtain slurries that can move inside the jacket providing a good displacement to the interest area. New technologies of preparation and use of chemicals and modernization of technological standards in the construction industry have resulted in the development of new chemical additives for optimizing the properties of building materials. Products such as polycarboxylate superplasticizers provide improved fluidity and cohesion of the cement grains, in addition to improving the dispersion with respect to slurries without additives. This study aimed at adapting chemical additives used in civil construction to be used use in oilwell cement slurries systems, using Portland cement CPP-Special Class as the hydraulic binder. The chemical additives classified as defoamer, dispersant, fluid loss controller and retarder were characterized by infrared absorption spectroscopy, thermogravimetric analyses and technological tests set by the API (American Petroleum Institute). These additives showed satisfactory results for its application in cement slurries systems for oil wells. The silicone-based defoamer promoted the reduction of air bubbles incorporated during the stirring of the slurries. The dispersant significantly reduced the rheological parameters of the systems studied. The tests performed with the fluid loss controller and the retarder also resulted in suitable properties for application as chemical additives in cement slurries
Resumo:
A pesquisa tem como objetivo desenvolver uma estrutura de controle preditivo neural, com o intuito de controlar um processo de pH, caracterizado por ser um sistema SISO (Single Input - Single Output). O controle de pH é um processo de grande importância na indústria petroquímica, onde se deseja manter constante o nível de acidez de um produto ou neutralizar o afluente de uma planta de tratamento de fluidos. O processo de controle de pH exige robustez do sistema de controle, pois este processo pode ter ganho estático e dinâmica nãolineares. O controlador preditivo neural envolve duas outras teorias para o seu desenvolvimento, a primeira referente ao controle preditivo e a outra a redes neurais artificiais (RNA s). Este controlador pode ser dividido em dois blocos, um responsável pela identificação e outro pelo o cálculo do sinal de controle. Para realizar a identificação neural é utilizada uma RNA com arquitetura feedforward multicamadas com aprendizagem baseada na metodologia da Propagação Retroativa do Erro (Error Back Propagation). A partir de dados de entrada e saída da planta é iniciado o treinamento offline da rede. Dessa forma, os pesos sinápticos são ajustados e a rede está apta para representar o sistema com a máxima precisão possível. O modelo neural gerado é usado para predizer as saídas futuras do sistema, com isso o otimizador calcula uma série de ações de controle, através da minimização de uma função objetivo quadrática, fazendo com que a saída do processo siga um sinal de referência desejado. Foram desenvolvidos dois aplicativos, ambos na plataforma Builder C++, o primeiro realiza a identificação, via redes neurais e o segundo é responsável pelo controle do processo. As ferramentas aqui implementadas e aplicadas são genéricas, ambas permitem a aplicação da estrutura de controle a qualquer novo processo
Resumo:
Biomass is considered the largest renewable energy source that can be used in an environmentally sustainable. From the pyrolysis of biomass is possible to obtain products with higher energy density and better use properties. The liquid resultant of this process is traditionally called bio-oil. The use of infrared burners in industrial applications has many advantages in terms of technical-operational, for example, uniformity in the heat supply in the form of radiation and convection, with a greater control of emissions due to the passage of exhaust gases through a macroporous ceramic bed. This paper presents a commercial infrared burner adapted with an ejector proposed able to burn a hybrid configuration of liquefied petroleum gas (LPG) and bio-oil diluted. The dilution of bio-oil with absolute ethanol aimed to decrease the viscosity of the fluid, and improving the stability and atomization. It was introduced a temperature controller with thermocouple modulating two stages (low heat / high heat), and solenoid valves for fuels supply. The infrared burner has been tested, being the diluted bio-oil atomized, and evaluated its performance by conducting energy balance. The method of thermodynamic analysis to estimate the load was used an aluminum plate located at the exit of combustion gases and the distribution of temperatures measured by thermocouples. The dilution reduced the viscosity of the bio-oil in 75.4% and increased by 11% the lower heating value (LHV) of the same, providing a stable combustion to the burner through the atomizing with compressed air and burns combined with LPG. Injecting the hybrid fuel there was increase in the heat transfer from the plate to the environment in 21.6% and gain useful benefit of 26.7%, due to the improved in the efficiency of the 1st Law of Thermodynamics of infrared burner
Resumo:
The Wireless Sensor Networks (WSN) methods applied to the lifting of oil present as an area with growing demand technical and scientific in view of the optimizations that can be carried forward with existing processes. This dissertation has as main objective to present the development of embedded systems dedicated to a wireless sensor network based on IEEE 802.15.4, which applies the ZigBee protocol, between sensors, actuators and the PLC (Programmable Logic Controller), aiming to solve the present problems in the deployment and maintenance of the physical communication of current elevation oil units based on the method Plunger-Lift. Embedded systems developed for this application will be responsible for acquiring information from sensors and control actuators of the devices present at the well, and also, using the Modbus protocol to make this network becomes transparent to the PLC responsible for controlling the production and delivery information for supervisory SISAL
Resumo:
From their early days, Electrical Submergible Pumping (ESP) units have excelled in lifting much greater liquid rates than most of the other types of artificial lift and developed by good performance in wells with high BSW, in onshore and offshore environments. For all artificial lift system, the lifetime and frequency of interventions are of paramount importance, given the high costs of rigs and equipment, plus the losses coming from a halt in production. In search of a better life of the system comes the need to work with the same efficiency and security within the limits of their equipment, this implies the need for periodic adjustments, monitoring and control. How is increasing the prospect of minimizing direct human actions, these adjustments should be made increasingly via automation. The automated system not only provides a longer life, but also greater control over the production of the well. The controller is the brain of most automation systems, it is inserted the logic and strategies in the work process in order to get you to work efficiently. So great is the importance of controlling for any automation system is expected that, with better understanding of ESP system and the development of research, many controllers will be proposed for this method of artificial lift. Once a controller is proposed, it must be tested and validated before they take it as efficient and functional. The use of a producing well or a test well could favor the completion of testing, but with the serious risk that flaws in the design of the controller were to cause damage to oil well equipment, many of them expensive. Given this reality, the main objective of the present work is to present an environment for evaluation of fuzzy controllers for wells equipped with ESP system, using a computer simulator representing a virtual oil well, a software design fuzzy controllers and a PLC. The use of the proposed environment will enable a reduction in time required for testing and adjustments to the controller and evaluated a rapid diagnosis of their efficiency and effectiveness. The control algorithms are implemented in both high-level language, through the controller design software, such as specific language for programming PLCs, Ladder Diagram language.
Resumo:
The Electrical Submersible Pumping is an artificial lift method for oil wells employed in onshore and offshore areas. The economic revenue of the petroleum production in a well depends on the oil flow and the availability of lifting equipment. The fewer the failures, the lower the revenue shortfall and costs to repair it. The frequency with which failures occur depends on the operating conditions to which the pumps are submitted. In high-productivity offshore wells monitoring is done by operators with engineering support 24h/day, which is not economically viable for the land areas. In this context, the automation of onshore wells has clear economic advantages. This work proposes a system capable of automatically control the operation of electrical submersible pumps, installed in oil wells, by an adjustment at the electric motor rotation based on signals provided by sensors installed on the surface and subsurface, keeping the pump operating within the recommended range, closest to the well s potential. Techniques are developed to estimate unmeasured variables, enabling the automation of wells that do not have all the required sensors. The automatic adjustment, according to an algorithm that runs on a programmable logic controller maintains the flow and submergence within acceptable parameters avoiding undesirable operating conditions, as the gas interference and high engine temperature, without need to resort to stopping the engine, which would reduce the its useful life. The control strategy described, based on modeling of physical phenomena and operational experience reported in literature, is materialized in terms of a fuzzy controller based on rules, and all generated information can be accompanied by a supervisory system
Resumo:
The decomposition process exercises an extensive control over the carbon cycle, affecting its availability and nutrient cycling in terrestrial ecosystems. The understanding of leaf decomposition patterns above the soil and fine roots decomposition below the soil is necessary and essential to identify and quantify more accurately the flow of energy and matter in forest systems. There is still a lack of studies and a large gap in the knowledge about what environmental variables act as local determinants over decomposition drivers. The knowledge about the decomposition process is still immature for Brazilian semiarid region. The aim of this study was to analyze the decomposition process (on leaves and fine roots) of a mixture of three native species for 12 months in a semiarid ecosystem in Northeast Brazil. We also examined whether the rate of decomposition can be explained by local environmental factors, specifically plant species richness, plant density and biomass, soil macro-arthropods species richness and abundance, amount of litterfall and fine root stock. Thirty sampling points were randomly distributed within an area of 2000 m x 500 m. To determine the decomposition rate, the litterbag technique was used and the data analysis were made with multiple regressions. There was a high degradation of dead organic matter along the experiment. Above ground plant biomass was the only environmental local factor significantly related to leaf decomposition. The density of vegetation and litter production were positively and negatively related to decay rates of fine roots, respectively. The results suggest that Caatinga spatial heterogeneity may exert strong influences over the decomposition process, taking into account the action of environmental factors related to organic matter exposure of and the consequent action of solar radiation as the decomposition process main controller in this region
Resumo:
The progressing cavity pump artificial lift system, PCP, is a main lift system used in oil production industry. As this artificial lift application grows the knowledge of it s dynamics behavior, the application of automatic control and the developing of equipment selection design specialist systems are more useful. This work presents tools for dynamic analysis, control technics and a specialist system for selecting lift equipments for this artificial lift technology. The PCP artificial lift system consists of a progressing cavity pump installed downhole in the production tubing edge. The pump consists of two parts, a stator and a rotor, and is set in motion by the rotation of the rotor transmitted through a rod string installed in the tubing. The surface equipment generates and transmits the rotation to the rod string. First, is presented the developing of a complete mathematical dynamic model of PCP system. This model is simplified for use in several conditions, including steady state for sizing PCP equipments, like pump, rod string and drive head. This model is used to implement a computer simulator able to help in system analysis and to operates as a well with a controller and allows testing and developing of control algorithms. The next developing applies control technics to PCP system to optimize pumping velocity to achieve productivity and durability of downhole components. The mathematical model is linearized to apply conventional control technics including observability and controllability of the system and develop design rules for PI controller. Stability conditions are stated for operation point of the system. A fuzzy rule-based control system are developed from a PI controller using a inference machine based on Mandami operators. The fuzzy logic is applied to develop a specialist system that selects PCP equipments too. The developed technics to simulate and the linearized model was used in an actual well where a control system is installed. This control system consists of a pump intake pressure sensor, an industrial controller and a variable speed drive. The PI control was applied and fuzzy controller was applied to optimize simulated and actual well operation and the results was compared. The simulated and actual open loop response was compared to validate simulation. A case study was accomplished to validate equipment selection specialist system
Resumo:
This work addresses issues related to analysis and development of multivariable predictive controllers based on bilinear multi-models. Linear Generalized Predictive Control (GPC) monovariable and multivariable is shown, and highlighted its properties, key features and applications in industry. Bilinear GPC, the basis for the development of this thesis, is presented by the time-step quasilinearization approach. Some results are presented using this controller in order to show its best performance when compared to linear GPC, since the bilinear models represent better the dynamics of certain processes. Time-step quasilinearization, due to the fact that it is an approximation, causes a prediction error, which limits the performance of this controller when prediction horizon increases. Due to its prediction error, Bilinear GPC with iterative compensation is shown in order to minimize this error, seeking a better performance than the classic Bilinear GPC. Results of iterative compensation algorithm are shown. The use of multi-model is discussed in this thesis, in order to correct the deficiency of controllers based on single model, when they are applied in cases with large operation ranges. Methods of measuring the distance between models, also called metrics, are the main contribution of this thesis. Several application results in simulated distillation columns, which are close enough to actual behaviour of them, are made, and the results have shown satisfactory
Resumo:
The Predictive Controller has been receiving plenty attention in the last decades, because the need to understand, to analyze, to predict and to control real systems has been quickly growing with the technological and industrial progress. The objective of this thesis is to present a contribution for the development and implementation of Nonlinear Predictive Controllers based on Hammerstein model, as well as to its make properties evaluation. In this case, in the Nonlinear Predictive Controller development the time-step linearization method is used and a compensation term is introduced in order to improve the controller performance. The main motivation of this thesis is the study and stability guarantee for the Nonlinear Predictive Controller based on Hammerstein model. In this case, was used the concepts of sections and Popov Theorem. Simulation results with literature models shows that the proposed approaches are able to control with good performance and to guarantee the systems stability
Resumo:
This thesis presents a new structure of robust adaptive controller applied to mobile robots (surface mobile robot) with nonholonomic constraints. It acts in the dynamics and kinematics of the robot, and it is split in two distinct parts. The first part controls the robot dynamics, using variable structure model reference adaptive controllers. The second part controls the robot kinematics, using a position controller, whose objective is to make the robot to reach any point in the cartesian plan. The kinematic controller is based only on information about the robot configuration. A decoupling method is adopted to transform the linear model of the mobile robot, a multiple-input multiple-output system, into two decoupled single-input single-output systems, thus reducing the complexity of designing the controller for the mobile robot. After that, a variable structure model reference adaptive controller is applied to each one of the resulting systems. One of such controllers will be responsible for the robot position and the other for the leading angle, using reference signals generated by the position controller. To validate the proposed structure, some simulated and experimental results using differential drive mobile robots of a robot soccer kit are presented. The simulator uses the main characteristics of real physical system as noise and non-linearities such as deadzone and saturation. The experimental results were obtained through an C++ program applied to the robot soccer kit of Microrobot team at the LACI/UFRN. The simulated and experimental results are presented and discussed at the end of the text