864 resultados para Conditional autoregressive random effects model
Resumo:
Data comprising 1,719 milk yield records from 357 females (predominantly Murrah breed), daughters of 110 sires, with births from 1974 to 2004, obtained from the Programa de Melhoramento Genetic de Bubalinos (PROMEBUL) and from records of EMBRAPA Amazonia Oriental - EAO herd, located in Belem, Para, Brazil, were used to compare random regression models for estimating variance components and predicting breeding values of the sires. The data were analyzed by different models using the Legendre's polynomial functions from second to fourth orders. The random regression models included the effects of herd-year, month of parity date of the control; regression coefficients for age of females (in order to describe the fixed part of the lactation curve) and random regression coefficients related to the direct genetic and permanent environment effects. The comparisons among the models were based on the Akaike Infromation Criterion. The random effects regression model using third order Legendre's polynomials with four classes of the environmental effect were the one that best described the additive genetic variation in milk yield. The heritability estimates varied from 0.08 to 0.40. The genetic correlation between milk yields in younger ages was close to the unit, but in older ages it was low.
Resumo:
Estimates of direct and maternal variance and heritability for weights at each week (up to 280 days of age) and month of age (up to 600 days of age) in Zebu cattle are presented. More than one million records on 200 000 animals, weighed every 90 days from birth to 2 years of age, were available. Data were split according to week (data sets 1) or month (data sets 2) of age at recording, creating 54 and 21 data sets, respectively. The model of analysis included contemporary groups as fixed effects, and age of dam (linear and quadratic) and age of calf (linear) effects as covariables. Random effects fitted were additive direct and maternal genetic effects, and maternal permanent environmental effect. Direct heritability estimates decreased from 0.28 at birth, to 0.12-0.13 at about 150 days of age, stayed more or less constant at 0.14-0.16 until 270 days of age and increased with age after that, up to 0.25-0.26. Maternal heritability estimates increased from birth (0.01) to a peak of 0.14 for data sets 1 and 0.07-0.08 for data sets 2 at about 180-210 days of age, before decreasing slowly to 0.07 and 0.05, respectively, at 300 days, and then rapidly diminished after 300 days of age. Permanent environmental effects were 1.5 to four times higher than genetic maternal effects and showed a similar trend.
Resumo:
The test-day model is the preferred method for genetic evaluations in dairy cattle. For this study, 28372 test-day records of 1220 lactations from 1997 to 2009 were used. The (co)variance components for milk in test-day were estimated using a Uni and multiple-traits repeated animal model with the Restricted Maximum Likelihood method (REML). The Contemporary Group (herd, year, and season of parity) and the age of parity (linear and quadratic) fixed effects, and the additive genetic, permanent environmental, and residual random effects were included in the model. The heritabilities ranged between 0.06 and 0.45 during lactation. The genetic correlations were greater than 0.93. In conclusion, the test-day model is appropriate for the genetic evaluation of dairy buffaloes in Colombia.
Resumo:
Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and Bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. © 2013 American Dairy Science Association.
Resumo:
Random regression models have been widely used to estimate genetic parameters that influence milk production in Bos taurus breeds, and more recently in B. indicus breeds. With the aim of finding appropriate random regression model to analyze milk yield, different parametric functions were compared, applied to 20,524 test-day milk yield records of 2816 first-lactation Guzerat (B. indicus) cows in Brazilian herds. The records were analyzed by random regression models whose random effects were additive genetic, permanent environmental and residual, and whose fixed effects were contemporary group, the covariable cow age at calving (linear and quadratic effects), and the herd lactation curve. The additive genetic and permanent environmental effects were modeled by the Wilmink function, a modified Wilmink function (with the second term divided by 100), a function that combined third-order Legendre polynomials with the last term of the Wilmink function, and the Ali and Schaeffer function. The residual variances were modeled by means of 1, 4, 6, or 10 heterogeneous classes, with the exception of the last term of the Wilmink function, for which there were 1, from 0.20 to 0.33. Genetic correlations between adjacent records were high values (0.83-0.99), but they declined when the interval between the test-day records increased, and were negative between the first and last records. The model employing the Ali and Schaeffer function with six residual variance classes was the most suitable for fitting the data. © FUNPEC-RP.
Resumo:
The Brazilian Association of Simmental and Simbrasil Cattle Farmers provided 29,510 records from 10,659 Simmental beef cattle; these were used to estimate (co)variance components and genetic parameters for weights in the growth trajectory, based on multi-trait (MTM) and random regression models (RRM). The (co)variance components and genetic parameters were estimated by restricted maximum likelihood. In the MTM analysis, the likelihood ratio test was used to determine the significance of random effects included in the model and to define the most appropriate model. All random effects were significant and included in the final model. In the RRM analysis, different adjustments of polynomial orders were compared for 5 different criteria to choose the best fit model. An RRM of third order for the direct additive genetic, direct permanent environmental, maternal additive genetic, and maternal permanent environment effects was sufficient to model variance structures in the growth trajectory of the animals. The (co)variance components were generally similar in MTM and RRM. Direct heritabilities of MTM were slightly lower than RRM and varied from 0.04 to 0.42 and 0.16 to 0.45, respectively. Additive direct correlations were mostly positive and of high magnitude, being highest at closest ages. Considering the results and that pre-adjustment of the weights to standard ages is not required, RRM is recommended for genetic evaluation of Simmental beef cattle in Brazil. ©FUNPEC-RP.
Resumo:
In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. © 2013 American Dairy Science Association.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this research was to estimate (co) variance functions and genetic parameters for body weight in Colombian buffalo populations using random regression models with Legendre polynomials. Data consisted of 34,738 weight records from birth to 900 days of age from 7815 buffaloes. Fixed effects in the model were contemporary group and parity order of the mother. Random effects were direct and maternal additive genetic, as well as animal and maternal permanent environmental effects. A cubic orthogonal Legendre polynomial was used to model the mean curve of the population. Eleven models with first to sixth order polynomials were used to describe additive genetic direct and maternal effects, and animal and maternal permanent environmental effects. The residual was modeled considering five variance classes. The best model included fourth and sixth order polynomials for direct additive genetic and animal permanent environmental effects, respectively, and third-order polynomials for maternal genetic and maternal permanent environmental effects. The direct heritability increased from birth until 120 days of age (0.32 +/- 0.05), decreasing thereafter until one year of age (0.18 +/- 0.04) and increased again, reaching 0.39 +/- 0.09, at the end of the evaluated period. The highest maternal heritability estimates (0.11 +/- 0.05), were obtained for weights around weaning age (weaning age range is between 8 and 9.5 months). Maternal genetic and maternal permanent environmental variances increased from birth until about one year of age, decreasing at later ages. Direct genetic correlations ranged from moderate (0.60 +/- 0.060) to high (0.99 +/- 0.001), maternal genetic correlations showed a similar range (0.41 +/- 0.401 and 0.99 +/- 0.003), and all of them decreased as time between weighings increased. Direct genetic correlations suggested that selecting buffalos for heavier weights at any age would increase weights from birth through 900 days of age. However, higher heritabilities for direct genetic weights effects after 600 days of age suggested that selection for these effects would be more effective if done during this age period. A greater response to selection for maternal ability would be expected if selection used maternal genetic predictions for weights near weaning. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
A data set of a commercial Nellore beef cattle selection program was used to compare breeding models that assumed or not markers effects to estimate the breeding values, when a reduced number of animals have phenotypic, genotypic and pedigree information available. This herd complete data set was composed of 83,404 animals measured for weaning weight (WW), post-weaning gain (PWG), scrotal circumference (SC) and muscle score (MS), corresponding to 116,652 animals in the relationship matrix. Single trait analyses were performed by MTDFREML software to estimate fixed and random effects solutions using this complete data. The additive effects estimated were assumed as the reference breeding values for those animals. The individual observed phenotype of each trait was adjusted for fixed and random effects solutions, except for direct additive effects. The adjusted phenotype composed of the additive and residual parts of observed phenotype was used as dependent variable for models' comparison. Among all measured animals of this herd, only 3160 animals were genotyped for 106 SNP markers. Three models were compared in terms of changes on animals' rank, global fit and predictive ability. Model 1 included only polygenic effects, model 2 included only markers effects and model 3 included both polygenic and markers effects. Bayesian inference via Markov chain Monte Carlo methods performed by TM software was used to analyze the data for model comparison. Two different priors were adopted for markers effects in models 2 and 3, the first prior assumed was a uniform distribution (U) and, as a second prior, was assumed that markers effects were distributed as normal (N). Higher rank correlation coefficients were observed for models 3_U and 3_N, indicating a greater similarity of these models animals' rank and the rank based on the reference breeding values. Model 3_N presented a better global fit, as demonstrated by its low DIC. The best models in terms of predictive ability were models 1 and 3_N. Differences due prior assumed to markers effects in models 2 and 3 could be attributed to the better ability of normal prior in handle with collinear effects. The models 2_U and 2_N presented the worst performance, indicating that this small set of markers should not be used to genetically evaluate animals with no data, since its predictive ability is restricted. In conclusion, model 3_N presented a slight superiority when a reduce number of animals have phenotypic, genotypic and pedigree information. It could be attributed to the variation retained by markers and polygenic effects assumed together and the normal prior assumed to markers effects, that deals better with the collinearity between markers. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to investigate, in a population of crossbred cattle, the obtainment of the non-additive genetic effects for the characteristics weight at 205 and 390 days and scrotal circumference, and to evaluate the consideration of these effects in the prediction of breeding values of sires using different estimation methodologies. In method 1, the data were pre-adjusted for the non-additive effects obtained by least squares means method in a model that considered the direct additive, maternal and non-additive fixed genetic effects, the direct and total maternal heterozygosities, and epistasis. In method 2, the non-additive effects were considered covariates in genetic model. Genetic values for adjusted and non-adjusted data were predicted considering additive direct and maternal effects, and for weight at 205 days, also the permanent environmental effect, as random effects in the model. The breeding values of the categories of sires considered for the weight characteristic at 205 days were organized in files, in order to verify alterations in the magnitude of the predictions and ranking of animals in the two methods of correction data for the non-additives effects. The non-additive effects were not similar in magnitude and direction in the two estimation methods used, nor for the characteristics evaluated. Pearson and Spearman correlations between breeding values were higher than 0.94, and the use of different methods does not imply changes in the selection of animals.
Resumo:
The issue of assessing variance components is essential in deciding on the inclusion of random effects in the context of mixed models. In this work we discuss this problem by supposing nonlinear elliptical models for correlated data by using the score-type test proposed in Silvapulle and Silvapulle (1995). Being asymptotically equivalent to the likelihood ratio test and only requiring the estimation under the null hypothesis, this test provides a fairly easy computable alternative for assessing one-sided hypotheses in the context of the marginal model. Taking into account the possible non-normal distribution, we assume that the joint distribution of the response variable and the random effects lies in the elliptical class, which includes light-tailed and heavy-tailed distributions such as Student-t, power exponential, logistic, generalized Student-t, generalized logistic, contaminated normal, and the normal itself, among others. We compare the sensitivity of the score-type test under normal, Student-t and power exponential models for the kinetics data set discussed in Vonesh and Carter (1992) and fitted using the model presented in Russo et al. (2009). Also, a simulation study is performed to analyze the consequences of the kurtosis misspecification.
Resumo:
Introduction: The purpose of this ecological study was to evaluate the urban spatial and temporal distribution of tuberculosis (TB) in Ribeirao Preto, State of Sao Paulo, southeast Brazil, between 2006 and 2009 and to evaluate its relationship with factors of social vulnerability such as income and education level. Methods: We evaluated data from TBWeb, an electronic notification system for TB cases. Measures of social vulnerability were obtained from the SEADE Foundation, and information about the number of inhabitants, education and income of the households were obtained from Brazilian Institute of Geography and Statistics. Statistical analyses were conducted by a Bayesian regression model assuming a Poisson distribution for the observed new cases of TB in each area. A conditional autoregressive structure was used for the spatial covariance structure. Results: The Bayesian model confirmed the spatial heterogeneity of TB distribution in Ribeirao Preto, identifying areas with elevated risk and the effects of social vulnerability on the disease. We demonstrated that the rate of TB was correlated with the measures of income, education and social vulnerability. However, we observed areas with low vulnerability and high education and income, but with high estimated TB rates. Conclusions: The study identified areas with different risks for TB, given that the public health system deals with the characteristics of each region individually and prioritizes those that present a higher propensity to risk of TB. Complex relationships may exist between TB incidence and a wide range of environmental and intrinsic factors, which need to be studied in future research.