653 resultados para Churchite-(REE)
Resumo:
The dissertation focuses on the petrology, geochemistry of the volcanic rocks in east Tibet and southeast Yunnan. It lucubrates the Magmatic process, forming mechanism and the possible tectonic settings of the volcanic rocks. The volcanic rocks of Nangqen basin in east Tibet, Qinghai province are mainly Cenozoic intermediate-acid shoshonites. The rocks are LREE enriched and the LREE/HREE = 3~34; (La/Yb)_N = 18.17-53.59, and ΣREE 222~1260μg/g. There are no Eu anomaly, and Nb, Ta, Zr, Hf, Ti are markedly depleted. The isotopic composition is ~(87)Sr/~(86)Sr = 0.70497~0.70614, ~(206)Pb/~(204)Pb = 18.622~18.974, ~(208)Pb/~(204)Pb = 38.431~38.996, ~(207)Pb/~(204)Pb = 15.511~15.613, respectively. K-Ar age of the whole rocks and the single mineral are between 32.0-36.5Ma. Based on the trace elements and isotopic elements, we get the conclusion that the partial melting is one of the dominated forming mechanisms for the volcanic rocks in Naneqen basin. The magma did not experience the crustal contamination en route to the surface; however, the complex mixture took place in the upper mantle before the melt was formed. There are at least two kinds of mixed sources that can be identified. The basalt in southeast Yunnan province is studied. They are distributed in Maguan, Tongguan, and Pingbian County, which is located on the both sides of the Red River belt, and the ultrabasic xenolith are cursory introduced. The volcanic rocks belongs to the alkali series, which can be subdivided into trachybasalt and basanite(Ol normal molecule >5). The volcanic rocks are characteristics by high Ti and low Mg#. According to the magma calculation model, the original rocks of the basalt in southeast Yunnan province are Spinel Lherzolite in Tongguan, Garnet Lherzolite in Pingbian and Maguan, while Togguan undergoes 2-5 percent and percent of partial melting, whereas volcanism in Maguan and Pingbian was so complex to calculate. The fractional crystallization took place during the magma evoltion in southeast Yunnan. The basalt is enriched in LREE with LREE/HREE=9.23-20.19. All of the trace elements display weak Nb, Ta peak, and the depletion of Zr, Hf and Ti in Maguan and pingbian represent the presence of Garnet in the source. The composition of the isotope ratio are ~(87)Sr/~(86)Sr = 0.70333-0.70427, ~(143)Nd/~(144)Nd = 0.512769-0.512940, ~(206)Pb/~(204)Pb = 18.104-18.424, ~(207)Pb/~(204)Pb = 15.483 -15.527; ~(208)Pb/~(204)Pb = 37.938-38.560, respectively, which shows the characteristics of the HIMU type OIB. The volcanic rocks of the southwest Yunnan are derived from the enriched, OIB type mantle sources by synthesizing all the data from trace and isotope elements. It is similar to that of the volcanic rocks in Hawaii, a typical kind of the mixtures of the recycled oceanic crust plume and depleted asthenosphere. To sum up, the volcanic rocks in southeast Yunnan are formed by the intraplate hotpot volcanism.
Resumo:
Directed by the theory of "Collision Tectonic Facies", the tectonic setting and dynamic mechanism of the formation of Songliao basin in late Mesozoic (J_3-K_1) are studied in the present thesis with the methods of petrology, petrochemistry, geochemistry and isotopic geochronology. The research contents in this paper include as followings. Firstly, the general tectonic frame is made up of different tectonic facies formed from Mid-late Proterozoic to Mesozoic, which are Huabei plate, the Chengde-Siziwangqi melange (Pz_1), the Wenduermiao magmatic arc (Pz_1), the Hegenshan-Chaogenshan melange (Pz_2), the accretion arec (Pz_1-P), the Raohe-Hulin melange (Mz), the magmatic arc (Mz) and the pull-apart basin on the magmatic arc (Mz). Secondly, the volcanic rock assemblages of Songliao basin and its adjacent area in late Mesozoic is the typical calc-alkaline of the magmatic arc. The types of volcanic rocks in the study area include basalts, basaltic andesites, andesites, dacites and rhyolites, and basic-intermediate volcanic rocks have higher alkalinity. The volcanic rock series in this area is the high-K calc-alkaline series. Thirdly, the total REE of volcanic rocks in Songliao basin and its adjacent area is higher than that of the chondrite. The pattern of the REE normalized by the chondrite shows the characteristics similar to that of the typical island arcs or the active continental margins in the earth, that is enrichment of LREE and depletion of Eu. The spider-diagram of the trace element normalized by the primitive mantle also expresses the similar features to that of the typical island arcs or the active continental margins, it has distinctive valleies of Nb, Ta, Sr, P, and Ti, as well as the peaks of La, Ce, Th, U, and K. The incompatible elements show that the high field strength elements, such as Nb, Ta, Ti, and P, are depletion while the low field strength elements, such as K, U, Pb, and Ba, are enrichment. These features are similar to those of orogenic volcanic rocks and imply the formation of the volcanic rocks in this area is related to the subduction. The degrees of both the enrichment of the HFS elements and depletion of the LFS elements become more obvious from basic to acid volcanic rocks, which suggests crustal contamination enhances with the magmatic crystallization and fractionation. The concentration of the compatible elements is W-shape, and anomalies in Cr and Ni suggest there is the contamination during the magmatic crystallization and fractionation. Fourthly, the isotopic age data prove the volcanic activity in the Songliao basin and its adjacent area started in the early-middle Jurassic, and ended in the end of the early Cretaceous-the beginning of the Cretaceous. The volcanism summit was the late Jurassic-the early Cretaceous (100 - 150Ma). Finally, the tectonic setting of volcanism in the late Mesozoic was magmatic arc, which originated the subduction of Raohe-Hulin trench to the northwest Asian plate. The subduction began in the middle Jurassic, and the collision orogenesis between the Sikhote-Alin arc and Asian continent was completed in the end of the early Cretaceous-the beginning of the late Cretaceous. The results of above tectonic processes were finally to format Nadanhada orogenic belt symbolized by the Raohe-Hulin suture or melange belt. The violently oblique movement of the Izanagi plate toward Asian plate in the late Mesozoic was the dynamic mechanism of above tectonic processes. At the same tome, the left-lateral strike-slip shear caused by the oblique movement of the Izanagi plate produced a series of strike-slip faults in east Asian margin, and the large scale displacements of these strike-slip faults then produced the pull-apart basing or grabens on the magmatic arc. Conclusively, the tectonic setting during the formation of the grabens of Songliao basin in the late Mesozoic was magmatic arc, and its dynamic mechanism was the pull-apart. In a word, there was a good coupling relation among the oblique subduction of the oceanic plate, collisional orogene between island arc and continental plate, strike-slip shear of the faults and the formation of the grabens in Songliao basin and its adjacent area in late Mesozoic. These tectonic processes were completed in the unoin dynamic setting and mechanism as above description.
Resumo:
Different conclusions from previous work are made from the geochemical study for the early Paleozoic volcanic rocks hosting massive sulfide deposits in the north Qilian Orogen. The main points are: (1)The geochemical characteristics of the basalts and rhyolites from the Baiyin deposit are not consistent with that of the volcanic rocks in the continental rift setting, but show the relationship with subduction. The basalts and rhyolites from the Baiyin deposit are probably individual tectonic slice piled by subduction, and there is no bimodal volcanic rock suite occurred in the Baiyin deposit. Zircon U-Pb dating constrains the magmatic emplacement of basalts and rhyolites at 475±10Ma and 453±12Ma, respectively. The basalts are characterized by enriched Th and Sr, and depleted Nb, Ta and Ti. They have relatively high Th/Nb ratios between 0.9 and 1.3. Their εNd(T) values vary from -1.2 to +3.4. The chemical and isotopic compositions display a typical subduction-related signature, and they suggest that an enriched component with the isotopic composition of EMII might have contributed to the generation of the Baiyin basalts. The basalts were likely formed in a mature island-arc or a volcanic arc built on comparatively young or thin continental crust in an active continental margin. The rhyoIites have low concentrations of LILE compared to the basalts. They do not seen to have a relationship with the basalts, because of their significantly higher εNd(T) values (+4.3~+7.7). The high and positive εNd(T) values also rule out their derivation from anatexis of the continental crust. A modeling study suggests that the source.of the Zhe-Huo and Xiaotieshan rhyolites is similar to boninite and IAT (island-arc tholeiite), and hence indicating an intra-oceanic arc environment. (2) The formation of the Shangliugou volcanic rocks from .Qilian area is also related to subduction. The basaltic andesite have low TiO_2(0.45~0.63%) and P_2O_5(0.04~0.09) content, and high Th/Nb ratios (0.3~0.6). They show flat REE patterns. Their εNd(T) values vary in a narrow range from +4.8 to +6.4. The chemical and isotopic compositions indicate that they are derived from a slightly depleted mantle source and are fromed in intra-island arc setting. The rhyolites show calc-alkaline trend. They show enriched LREE and fiat HREE patterns with obvious negative Eu anomaly. They have high Th/Ta ratios (5.0 ~ 11.7) and large negative εNd(T) values (-2.6 ~ -8.4). The rhyolites are formed in active continental margin and result from a mixed process of two endmembers, or crust assimilation. (3) The metal elements of the volcanic-hosted massive sulfide deposit have two sources, the copper and zinc are derived from rhyolitic magmas whereas the lead are probably related to old sediments overlying the rhyolites. (4) It is suggested here that the volcanic rocks hosting massive sulfide deposit in the north Qilian orogen, which are previously considered as a bimodal suite of Neo-proterozoic to middle Cambrian age in a continental rift, are virtually related to subduction magmatism in Ordovician age, and there might have no continental rift magmatism of Neo-proterozoic to middle Cambrian in the north Qilian.
Resumo:
In Asia, the significant environment changes in Cenozoic include: uplift of Himalayas and Tibetan Plateau, formation Asian monsoon system, Aridification in Central Asia. One of major advances in recent studies of eolian deposit on the Loess Plateau is the verification of the eolian origin for the Late Tertiary Hipparion Red-Earth (also called red-Clay) underlying the Quaternary loess. Thus, the Late Tertiary eolian deposit, which has been proven a nearly continuous terrestrial record and sensitive to climate change, provides us an important archive to understand these above Cenozoic environment events. The deposit in eastern Loess Plateau has been extensively studied, while the property and age of deposit underlying the Quaternary loess in western plateau remains unclear. In this paper, detail investigations were made on the Sedimentology, geochemistry of Longxi section, a typical section in western Loess Plateau, to address its origin, and on micromammalian fossils and magnetostratigraphy to address its age. The main conclusions are presented as following: 1. The sedimentological and geochemical properties in Longxi section are highly similar to typical Quaternary eolian deposit in Loess Plateau. Nearly 100 paleosols are recognized in the field, and the grain size are very fine with the median grain size centered at 4~7μm. There is a good agreement of both major and trace element compositions between Longxi deposit and the Quaternary Loess. The REE distribution patterns of Longxi deposit and the Quaternary loess are remarkably similar in shape, with enrichment LREE and fairly flat HREE profiles and clear negative Eu anomaly. The mangnetic minerals in Longxi deposit are mainly magnetite, hematite and maghematite, which are similar to those of the Hipparion Red-Earth and Quaternary Loess. The major difference among them is that the samples from Longxi section contain more hematite. The characteristics of anisotropy of magnetic susceptibility (AMS) in Longxi deposit is highly consistent with that of Quaternary loess, while values of the major AMS parameters, e.g. anisotropy degree, magnetic foliation and lineation, are significantly lower than those of fluvial and lake deposits. These evidences indicate an eolian origin for the sediment. 2. An investigation of micromammalian fossils was firstly carried out for determining the approximate age of the sequence because of lack of materials for accurate isotope dating. Three fossil assemblages were obtained which indicate a chronological range from the Middle Miocene to Late Miocene. The magnetostratigraphical study suggests that it is a near continuous terrestrial record for the period from 13.23 to 6.23 MaB.P. The obtained chronology is highly consistent with fossils assemblages. This section is the oldest eolian deposit presently known in Loess Plateau. 3. The magnetic susceptibly value is high in paleosols than in surrounded weak-weathered layers, which suggests that it may be a climate index on orbital time scale. While it cannot be used as a proxy to address the long-term, change of climate on tectonic time scale, as content of the magnetic minerals is highly variable in different parts of the section. 4. The appearance of Middle Miocene eolian deposit in the Loess Plateau marks the strengthening of aridification of Central Asia. The high degree of similarity between the geochemical properties of Longxi eolian deposit, Hipparion Red-Earth and Quaternary loess a suggests that a rather similar source provenance. The dust accumulation rate (DAR) of Longxi section, which is widely used as a proxy to document the aridity in source areas in marine and terrestrial record studies, recorded the aridity condition in northwestern China over a period from Middle Miocene to Late Miocene. The DAR of the section shows that the continent aridity remains moderate and relative stable over that period.
Resumo:
The East Kunlun area of Xinjiang (briefly EKAX) is the western part of broadly speaking East Kunlun orogenic zone. The absence of geological data (especially ophiolites) on this area has constrained our recognition to its geology since many years. Fund by National 305 Item (96-915-06-03), this paper, by choosing the two ophiolite zones (Muztag and Southwestern Margin of Aqikekule Lake ophiolite zones) exposed at EKAX as the studied objects and by the analysis of thin section, electron probe, XRF, ICP-MS, SEM and Sm-Nd isotope, totally and sys ematically dealt with the field geological, petrological, minerological, petrochemical and geochemical characteristics (including trace, rare earth element and Sm-Nd isotope) and the tectonic setting indicated by them for each ophilite zone. Especially, this paper discussed the trace and rare earth element patterns for metamorphic peridotites, their implications and related them to the other components of ophiolite in order to totally disclose ophiolite origins. Besides, this paper also studied the petrological, geochemical and paleobiological characteristics for the cherts coexsisted with the Muztag ophiolite and the tectonic setting indicated by them. Based on these, the author discussed the tectonic evolution from Proterozoic to Permian for this area. For Muztag ophiolite, their field geological, petrological, minerological, petrochemical and geochemical characteristics show that: ① outcropped along the Muztag-Jingyuhu fault with west-to-east strike, the ophiolite is composed of such three components as metamorphic peridotites, cumulates and volcanic rocks; ② metamophic peridotites consist of such types as lherzolites, serpentinized lherzolites and serpentinites, only pyroxenites is seen of cumulates and volcanic rocks include basalts, basaltic andesites and andesites; ③ mineralogical data on this ophiolite suggest it formed in supra-subduction zone (SSZ)environment, and its mantle wedge is heterogeneous; ④ whole-rock TiO_2 and Al_2O_3 of metamorphic peridotites indicate their original environment with the MORB and SSZ characteristics; ⑤ metamorphic peridotites have depleted LREE and flat REE patterns and volcanic rocks have enriched LREE patterns; ⑥ trace element characteristics of metamorphic peridotites imply that they had undergone Nb and Ta enrichment event after partial melting; ⑦ trace element characteristics of volcanic rocks and their tectonic diagrams show they are formed in the spreading and developed island arc environment with back-arc basin, such as rifted island arc, which is supported by the ε_(Nd)(t) -2.11~+3.44. In summary, the above evidence implies that Muztag ophiolite is formed in SSZ environment, where heterogeneous mantle wedge was metasomatised by the silica-enriched melt from subducted sediments and/or oceanic crust, which makes the mantle wedge enriched again, and this enriched mantle wedge later partially melted to form the volcanic rocks. For Southwestern Margin of Aqikekule Lake ophiolite, their field geological, petrological, minerological, petrochemical and geochemical characteristics show that: ① it outcropped as tectonic slices along the near west-to-east strike Kunzhong fault and is composed of metamorphic perodotties, cumulates and volcanic rocks, in which, chromites are distributed in the upper part of metamorphic peridotites as pods, or in the lower part of cumulates as near-strata; ② metamorphic peridotites include serpentinites, chromite-bearing serpentinites, thlorite-epidote schists and chromitites, of which, chromitites have nodular and orbicular structure, and cumulates include pyroxenits, serpentinites, chromite-bearing serpentinites, chromites and metamorphically mafic rocks and only basalts are seen in volcanic rocks; ③ Cr# of chromites suggest that they formed in the SSZ and Al_2O_3 and TiO_2 of metamorphic peridotites also suggest SSZ environment; ④metamorphic peridotites have V type and enriched LREE patterns, cumulates have from strongly depleted LREE, flat REE to enriched LREE patterns with universally striking positive Eu anomalies and basalts show flat REE or slight enriched LREE patterns with no Eu anomalies; ⑤ trace element and Sm-Nd isotope characteristics of metamorphic peridotites imply their strikingly heterogeneous mantle character(ε_(Nd)(t)+4.39~+26.20) and later Nb, Ta fertilization; ⑥ trace element characteristics of basalts and their tectonic diagrams show they probably formed in the rifted island arc or back-arc basin enviromnent. In summary, the above evidence shows that this ophiolite formed in the SSZ environment and melts from subudcted plate are joined during its formation. Rare earth element, whole-rock and sedimentary characteristics of cherts with the Muztag ophiolite show that they formed in the continental margin environment with developed back-arc basin, and radiolarias in the cherts indicate that the upper age of Muztag ophiolite is early carboniferous. Based on the accreted wedge models of Professor Li Jiliang for Kunlunshan Mountain and combined with study on the two typical ophiolite profiles of EKAX, the author discussed the tectonic evolution of EKAX from Proterzoic to Permian.
Resumo:
The mafic-ultramafic layered intrusions in the Panxi, China contain large V-Ti-magnetite deposits. These layered intrusions are related with the Emeishan continental flood basalts in space and time. Two layered intrusions, Hongge and Xinjie have clear PGE mineralization at the base of the intrusions. Thus the detailed investigations of these two intrusions not only have a geological but also have an economic significance. This thesis aims to characterize the elemental and Sr-Nd isotopic features of diverse rock zones within the intrusion on the basis of systematic studies of the major, trace element and isotope ratios, therefore to constrain the petrogenesis, mantle source and evolution of the Hongge and Xinjie intrusions. Generally, both Hongge and Xinjie intrusions show the same Fe-Ti-rich and Si-M-poor characteristics. They are also enriched in rare-earth elements (REE) and large-ion lithophile elements (LILE) as well as in Sr-Nd isotope ratios (Hongge: initial Sr = 0.7056-0.7076, ε_(Nd)(t) and (Nd/Sm)_N-ε_(Nd)(t) plots, the Hongge intrusion has a similar elemental and isotopic features to the Emeishan low-Ti (LT) basalts, whereas the Xinjie intrusion was close to the Emeishan high-Ti (HT) basalt. Therefore, the Hongge intrusion may be co-genetic with the LT basalt, formed by the partial melting of the spinel-garnet transition mantle that had a slight enriched isotope character. In contrast, the Xinjie intrusion and the HT basalts are probably derived from the garnet-phases mantle with a primitive isotope character. The involvement of the components of mantle wedge into the source is considered to be the major reason of the REE and LILE enrichment and Nd isotope depletion in the Xinjie intrusion. In contrast with the systematic variations in TiO_2 content, Mg#, transition elements (Ni, Cu, Co), REE concentrations, and La/Yb, La/Sm ratios from the lower zone to upper zone, the different rock zones of the Hongge intrusion have no clear Sr-Nd isotope variations. This suggests that the Hongge intrusions were formed by the crystal fractionation from the same magma source. The rhythm may be formed by slow injection of the co-genetic magma during the crystal fractionation. The increase in K_2O and Al_2O_3 contents, REE abundance, and the degree of the REE fractionation in the base of the intrusion, together with the relatively low ε_(Nd)(t) value, may imply that the base of the Hongge intrusion was contaminated with the local crust rocks. Xinjie intrusion shows the clearly elemental and isotopic differences in diverse cumulus cycles. The observation of the systematic variations in TiO_2 content, Mg# value, transition elements (Ni, Cu, Co), REE concentrations, and La/Yb, La/Sm ratios in first cycle was not occurred in second cumulus cycle. In addition, the ε_(Nd)(t) value in second cumulus cycle is apparently higher than that of the first one. Thus the abruptly elemental and isotopic changes at the base of second cycle demonstrate that there is considerable new and depleted magma addition to the residue magma after the crystallization of the first cycle. These features are very similar to those of the well-known PGE-rich Bushveld and Stillwater layered intrusions. The PGE mineralization in Xinjie intrusion is much better than in Hongge intrusion. Therefore, the layered intrusion similar to the Xinjie in Panxi area posses the better prospects for the PGE deposits.
Resumo:
River is a major component of the global surface water and CO2 cycles. The chemistry of river waters reveals the nature of weathering on a basin-wide scale and helps us understand the exogenic cycles of elements in the continent-river-ocean system. In particular, geochemical investigation of large river gives important information on the biogeochemical cycles of the elements, chemical weathering rates, physical erosion rates and CO2 consumption during the weathering of the rocks within the drainage basin. Its importance has led to a number of detailed geochemical studies on some of the world's large and medium-size river systems. Flowing in the south of China, the Xijiang River is the second largest river in the China with respect to its discharge, after the Yangtze River. Its headwaters drain the YunGui Plateau, where altitude is approximately 2000 meters. Geologically, the carbonate rocks are widely spread in the river drainage basin, which covers an area of about 0.17xl06 km2, i.e., 39% of the whole drainage basin. This study focuses on the chemistry of the Xijiang river system and constitutes the first geochemical investigation into major and trace elements concentrations for both suspended and dissolved loads of this river and its main tributaries, and Sr isotopic composition of the dissolved load is also investigated, in order to determine both chemical weathering and mechanical erosion rates. As compared with the other large rivers of the world, the Xijiang River is characterized by higher major element concentration. The dissolved major cations average 1.17, 0.33, 0.15, and 0.04 mmol I"1 for Ca, Mg, Na, and K, respectively. The total cation concentrations (TZ+) in these rivers vary between 2.2 and 4.4 meq I'1. The high concentration of Ca and Mg, high (Ca+Mg)/(Na+K) ratio (7.9), enormous alkalinity and low dissolved SiO2/HCO3 ratio (0.05) in river waters reveal the importance of carbonate weathering and relatively weak silicate weathering over the river drainage basin. The major elements in river water, such as the alkalis and alkaline-earths, are of different origins: from rain water, silicate weathering, carbonate and evaporite weathering. A mixing model based on mass budget equation is used in this study, which allows the proportions of each element derived from the different source to be calculated. The carbonate weathering is the main source of these elements in the Xijiang drainage basin. The contribution of rainwater, especially for Na, reaches to approximately 50% in some tributaries. Dissolved elemental concentration of the river waters are corrected for rain inputs (mainly oceanic salts), the elemental concentrations derived from the different rock weathering are calculated. As a consequence, silicate, carbonate and total rock weathering rates, together with the consumption rates of atmospheric CO2 by weathering of each of these lithologies have been estimated. They provide specific chemical erosion rates varying between 5.1~17.8 t/km2/yr for silicate, 95.5~157.2 t/km2/yr for carbonate, and 100.6-169.1 t/km2/yr for total rock, respectively. CO2 consumptions by silicate and carbonate weathering approach 13><109and 270.5x10 mol/yr. Mechanical denudation rates deduced from the multi-year average of suspended load concentrations range from 92-874 t/km2/yr. The high denudation rates are mainly attributable to high relief and heavy rainfall, and acid rain is very frequent in the drainage basin, may exceed 50% and the pH value of rainwater may be <4.0, result from SO2 pollution in the atmosphere, results in the dissolution of carbonates and aluminosilicates and hence accelerates the chemical erosion rate. The compositions of minerals and elements of suspended particulate matter are also investigated. The most soluble elements (e.g. Ca, Na, Sr, Mg) are strongly depleted in the suspended phase with respect to upper continent crust, which reflects the high intensity of rock weathering in the drainage basin. Some elements (e.g. Pb, Cu, Co, Cr) show positive anomalies, Pb/Th ratios in suspended matter approach 7 times (Liu Jiang) to 10 times (Nanpan Jiang) the crustal value. The enrichment of these elements in suspended matter reflects the intensity both of anthropogenic pollution and adsorption processes onto particles. The contents of the soluble fraction of rare earth elements (REE) in the river are low, and REE mainly reside in particulate phase. In dissolved phase, the PAAS-normalized distribution patterns show significant HREE enrichment with (La/Yb) SN=0.26~0.94 and Ce depletion with (Ce/Ce*) SN=0.31-0.98, and the most pronounced negative Ce anomalies occur in rivers of high pH. In the suspended phase, the rivers have LREE-enriched patterns relative to PAAS, with (La/Yb) SN=1 -00-1 .40. The results suggest that pH is a major factor controlling both the absolute abundances of REE in solution and the fractionation of REE of dissolved phase. Ce depletion in river waters with high pH values results probably from both preferential removal of Ce onto Fe-Mn oxide coating of particles and CeC^ sedimentation. This process is known to occur in the marine environment and may also occur in high pH rivers. Positive correlations are also observed between La/Yb ratio and DOC, HCO3", PO4", suggesting that colloids and (or) adsorption processes play an important role in the control of these elements.
Resumo:
Using knowledge of geology, geochemistry, coal petrology, mineralogy, by means of a variety of advanced measuring methods such as inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled atomic emission spectrometry (ICP-AES), X-ray powder diffraction (XRD), scanning electron microscopy with energy-dispersive spectrometer(SEM-EDS), sequential chemical extract and density fractions, the characteristics of trace elements and minerals in Jurassic Beipiao coal mine under inland limnetic sedimentary environment and in late Permian Jianxin and Qiaotou coal mines under paralic swamp sedimentary environment were studied. Compared with the average concentration in the world bituminous coals, the Beipiao coal was characterized by relatively high contents of Sc, Ti, Cr, Co, Ni, Zn, Se, Sr, Zr, Y, Ba, REE and Th, and lower contents of V, Rb, Cd, Sn, Pb, Bi and U; while the Jianxin coal was relatively enriched in Li, Sc, Ga, Sr, Y, Nb, Sb, Th and U, with low concentration of Be, Co, Ni, Cu, Ge, Zr, Mo, Cd, Cs, Ba, Pb and Bi; and the Qiaotou coal was enriched in Li, Sc, Sr, Nb, Ta, Zr, REE, Hf, Th and U, with low concentration of Be, V, Co, Ni, Cu, Ge, Mo, Cd, Cs, Ba, Tl, Pb and Bi. The concentrations of Ca, Mg and K in Beipiao coal are higher than those in Jianxin coal and Qiaotou coal, while Fe, S and Ti in Beipiao coal are lower than those in Jianxin coal and Qiaotou coal. The proximate analysis of coal samples was carried out, which indicated that Beipiao coal was medium- to high- ash (5.92-60.68%) with low sulphur coal, and Jianxin coal and Qiaotou coal was medium to high ash (8.85-46.33%) with high sulphur. The reflectivity was measured, which explained that Beipiao coal belonged to high volatile bituminous coal, Jianxin coal was low volatile bituminous coal and Qiaotou coal was low volatile anthracite. Quantitative maceral analyses were studied. The characteristics of rare earth elements (REE) were investigated, which showed that the total contents of REE were higher than that of the world's average content. With the increase of coal's metamorphic grade, the total contents of REE decreased from 98.5 X 10"6 of Beipiao coal to 94.2 X 10"6 of Jianxin coal, and to 75.9 X 10"6 of Qiaotou coal, and 5Eu reduced which indicated that the element Eu depleted. The characteristics of REE was controlled by the metamorphic grade of coal. And REE were mainly absorbed in clay minerals in Beipiao coal samples, while in Jianxin and Qiaotou coal mines, REE were primarily related to clay mineral and pyrite. The variation of trace elements in vertical direction of coal seams was studied, and the results showed that different trace elements differed greatly. The correlation between trace elements and ash were determined. Four major trace elements (aluminium-silicates, sulphide, carbonate and phosphate) accounted for the occurrence and distribution of most elements studied were determined. Coal samples were separated by density fraction, which showed that Cr, Cu, Mo and Pb were closely related to inorganic matters mainly distributed in P >2.6 and dropped remarkably in the density fractions P <2.3 . The occurrences of Co, Cr, Ni, As, Se, Mo, U were studied directly and quantitatively using sequential chemical extract with six steps, which showed that Co. Ni, Mo and U were mainly in the form of mineral, and As, Se chiefly in the form of organic state, while Cr mostly in the form of organic state and mineral. Major mineral phases presented in the Beipiao coal were Kaolinite, illite, quartz, calcite, and small amount of siderite, barite. While major mineral phases in Jianxin and Qiaotou coal were pyrite, kaolinite, and small amount of marcasite, rutile, sphalerite. This is the first time that the chromite in the coal was discovered in China, which indicates that Cr occurrence appeared in the form of chromite. The ratio of Sr/Ba, Sr/Ca and V/Ni in Beipiao coal mine under inland limnetic is smaller than that of in Jianxin and Qiaotou coal mines under paralic swamp. The ratio of K/Na and Th/U of Beipiao coal mine is higher than that of Jianxin and Qiaotou coal mine, which proved that Beipiao coal was not affected by sea water and Jianxin and Qiaotou coal were affected by sea water. Trace elements such as Cr, Ni, Mo in minerals were analyzed by SEM-EDS. The factors controlling the enrichment of trace elements can be divided into syngenetic stage factors and epigenetic stage factors.
Resumo:
On account of some very peculiar features, such as extremely high Sr and Nd contents which can buffer their primary isotopic signatures against crustal contamination, deep-seated origin within mantle, and quick ascent in lithosphere, carbonatites are very suitable for deciphering the nature of sub-continental lithospheric mantle(SCLM) and receiving widespread attentions all around the world. The Mesozoic carbonatites located in western Shandong was comprehensively investigated in this dissertation. The extremely high REE concentrations, similar spider diagrams to most other carbonatites around the world and high Sr. low Mn contents of apatite from carbonatites confirm their igneous origin. The K depletion of carbonatites from this studies reflect the co-existing of carbonatite melts with pargasite+phlogopite lherzolite rather than phlogopite lherzolite. Geological characteristics and their occumng without associated silicate rocks argue against their origin of fractionation of or liquid immisibility with carbonated silicate melts. In contrast to the low S7Sr/86Sr and high l43Nd/l44Nd of other carbonatites in the world, carbonatites of this studies show EMU features with high S7Sr/86Sr and low l4jNd/144Nd ratios, which imply that this enriched nature was formed through metasomatism of enriched mantle preexisted beneath the Sino-korean craton by partial melts of subducted middle-lower crust of Yangtze craton. In addition to carbonatites, the coeval Mesozoic volcanic rocks from western Shandong were also studied in this dissertation. Mengyin and Pingyi volcanic rocks, which located in the south parts of western Shandong are shoshonite geochemically. while volcanic rocks cropped out in other places are high-K calc-alkaline series. All these volcanic rocks enriched in LREE and LILE. depleted in HFSE, and show TNT(strong negative anomalies in Ta, Nb. Ti) patterns in spider diagrams which are common phenomena in arc-related volcanic rocks. The Sr-Nd-Pb isotopic systematics reveal that the volcanic rocks decrease gradually in 87Sr/86Sr, 206Pb/204Pb, 20SPb/204Pb and increase in TDM from south to north, suggesting the distinction of SCLM beneath Shandong in Mesozoic is more explicit in south-north trending than in east-west trending. The variable features of SCLM can be attributed to the subduction of Yangtze craton beneath Sino-Korean craton, and subsequent metasomatism of SCLM by partial melts of Yangtze lower crust in different extent.
Resumo:
The Tiezhai intrusive complex is located in the north of the Luxi block, Shandong province, eastern China. It lies ~30 km west of the Tanlu fault, and is at the cross of the Wujing and Jiushan faults. The Tiezhai complex was formed about 120~130 Ma, when large-scale magmatism was active in eastern part of North China. This paper carries out petrochemical and geochemical study on the Tiezhai intrusive complex, and discusses its genesis in detail. The Tiezhai intrusive complex can be subdivided into three rock series. The first is the gabbro-diorite series formed in early stage. Its composition variation shows 01 and Cpx fractional crystallization trend. The second is the porphyritic diorite and monzonite series, showing dominating Hb fractional differentiation. Their composition variation shows Hb fractional crystallization trend. The third is the porphyritic quartz monzonite with K-feldspar megacrysts, showing weakly Hb and Bi fractional crystallization trend. All types of rocks in the Tiezhai complex are belonging to the high-K cac-alkaline series. They have elevated Sr (450-1660 ppm), Ba (210-1780 ppm) and relatively low Rb (30-100 ppm). For the gabbro-dioritic rocks in the early stage, the abundances of Ni (20-250 ppm), Cr (50-350 ppm), V(l30-250 ppm) and Co (20-40 ppm) are high, indicating a mantle origin. All rocks have negative anormalies of Nb, Ta, Ti and P, and enriched LREE and strong differentiated REE patterns. The porphyritic monzonites and quartz monzonites have very low HREE, Yb and Y contents and positive Eu anormalies, similar to adakite. Most rocks have lowε_(Nd)(t) of-1.5~-10.9, and high (~(87)Sr/~(86)Sr)_i of 0.704~0.709. The data have characters of enriched lithosphere mantle (EMI). In summary, the Tiezhai intrusive complex was inferred to be generated by a mantle derived magma through fractional crystallization. When the primary magma gathered in some place between crust and mantle, the crystallization started and causing magma evolution. The remaining / evolved magma ascended and emplaced again and again in the upper crust in Tiezhai area. Then Tiezhai complex formed. The porphyritic monzonites and quartz monzonites have major and trace element characters of typical adakite, but they are likely to be generated by Hb fractional crystallization.
Resumo:
The Fanshan complex consists of layered potassic ultramafic-syenite intrusions. The Fanshan apatite (-magnetite) deposit occurs in the Fanshan complex, and is an important style of phosphorus deposit in China. The Fanshan complex consists of three (First- to Third-) Phases of intrusion, and then the dikes. The First-Phase Intrusive contains ten typical layered rocks: clinopyroxenite, biotite clinopyroxenite, coarse-grained biotite clinopyroxenite, pegmatitic orthoclase-biotite clinopyroxenite, variegated orthoclase clinopyroxenite, interstitial orthoclase clinopyroxenite, biotite rock, biotite-apatite rock, biotite rock and magnetite-apatite rock. This layered intrusive consists of nine rhythmic units. Each rhythmic unit essentially comprises a pair of layers: clinopyroxenite at the bottom and biotite clinopyroxenite at the top. The apatite (-magnetite) deposit is situated near the top of rhythmic Unit no. 6 of the First-Phase Intrusive. The Second-Phase Intrusive contains three typical rocks: coarse-grained orthoclase clinopyroxenite, . coarse-grained salite syenite and schorlomite-salite syenite. The Third-Phase Intrusive includes pseudo-trachytic salite syenite, porphyritic augite syenite, fine-grained orthoclase clinopyroxenite and fine-grained salite syenite. The origin of the Fanshan complex is always paid attention to it in China. Because most layered igneous intrusion in the world not only have important deposit in it, but also carry many useful information for studying the formation of the intrusion and the evolvement of magma. Two sketch maps were drawn through orebodies along no. 25 cross-cut on 425 mL and no. 1 cross-cut on 491 mL in the Fanshan mine. Through this mapping, a small-scaled rhythmic layering (called sub-rhythmic layering in the present study) was newly found at the top of the rhythmic Unit no. 6. The concept of sub-rhythmic layering is defined in this article. The sub-rhythmic layering is recognized throughout this apatite-rich part, except for magnetite-apatite rock. Presence of the layered magnetite-apatite rock is one of the characteristics of the Fanshan apatite (-magnetite) deposit. Thus, from this layer downwards six units of sub-rhythmic layering are recognized in the present study. Each unit consists of biotite clinopyroxenite (or biotite rock and biotite-apatite rock) layer at the bottom and apatite rock layer at the top. To study this feature in detail is an important work for understanding the origin of the Fanshan complex and apatite (-magnetite) deposit. The origin of the Fanshan complex and the relation of the formation of the apatite(-magnetite)deposit will be interpreted by the study of sub-rhythmic layering on the basis of previous research works. The magma formed the Fanshan complex was rich in K2O, early crystallized pyroxene, and after this phase more biotite crystallized, but no amphibole appeared. This indicated that the activity of H2O in the magma was low. Major element compositions of biotite and clinopyroxene (on thin sections) in the sub-rhythmic layering were analyzed using electron microprobe analyzer. The analytical results indicate Mg/(Mg+Fe*+Mn) atomic ratios (Fe*, total iron) of these two minerals rhythmically changed in sub-rhythmic layering. The trends of Mg/(Mg+Fe*+Mn) atomic ratio (Fe*, total iron) of biotite and clinopyroxene indicate that the magma evolved markedly from relatively magnesian bottom layer to less magnesian top layer in each sub-rhythmic unit. A general trend through the sub-rhythmic layering sequence is both minerals becoming relatively magnesian upwards. The formation temperatures for sub-rhythmic layering yield values between 600 and 800 ℃, were calculated using the ratio of Mg/(Mg+Fe+Mn) in the salite and biotite assemblage. The equilibrium pressures in the rhythmic layers calculated using the contents of Al in the salite were plotted in the section map, shown a concave curve. This indicates that the magma formed the First-Phase Intrusive crystallized by two vis-a-vis ways, from its bottom and top to its centre, and the magnetite-apatite rock was crytallized in the latest stage. The values of equilibrium pressures in the sub-rhythmic layering were 3.6-6.8(xlO8) Pa with calculated using the contents of Al in the salite. The characteristics of geochemistry in various intrusive rocks and the rocks or apatite of sub-rhythmic layers indicated that the Fanshan complex formed by the comagmatic crystallization. The contents of immiscible elements and REEs of apatite rock at the top of one sub-rhythmic unit are more than biotite clinopyroxenite at the bottom. The contents of immiscible elements and REEs of apatite of biotite clinopyroxenite at the bottom of one sub-rhythmic unit are higher than apatite rock at the top. The curves of rocks (or apatite) in the upper sub-rhythmic units are between two curves of the below sub-rhythmic unit in the primitive mantle-normalized trace element abundance spider diagram and the primitive mantle-normalized REE pattern. The trend for the contents of immiscible elements and REEs inclines to the same contents from the bottom to the top in sub-rhythmic layering. These characteristics of geochemistry of rocks or apatites from sub-rhythmic layering indicate that the latter sub-rhythmic unit was produced by the residual magma after crystallization of the previous sub-rhythmic unit. The characteristics of petrology, petrochemistry, geochemistry in the Fanshan complex and sub-rhythmic layers and the trends of Mg/(Mg+Fe+Mn) atomic ratio of biotite and clinopyroxene in sub-rhytmic layering rejected the hypotheses, such as magma immiscibility, ravitational settling and multiple and pulse supplement of magma. The hypothesis of differentiation by crystallization lacks of evidences of field and excludes by this study. On the base of the trends of formation temperatures and pressures, the characteristics of petrology, petrochemistry, geochemistry for the Fanshan complex and the characteristics of geochemistry for the rocks (or apatites), the trends of Mg/(Mg+Fe+Mn) atomic ratio of biotite and clinopyroxene in sub-rhytmic layering, and the data of oxygen, hydrogen, strontium and neodymium isotopes, this study suggests that the magma formed the Fanshan complex was formed by low degree partial melting of mantle at a low activity of H2O, and went through the differentiation at the depth of mantle, then multiply intruded and crystallized. The rhythmic layers of the First-Phase Intrusive formed by the magma fractional crystallized in two vis-a-vis ways, from the bottom and top to the centre in-situ fractional crystallization. The apatite (-magnetite) deposit of the Fanshan complex occurs in sub-rhythmic layering sequence. The the origin of the sub-rhythmic layering is substantially the origin of the Fanshan apatite (-magnetite) deposit. The magma formed the rhythmic layers of First-Phase Intrusive was rich in H2O, F and P at the later stage of its in-situ fractional crystallization. The Fanshan apatite (-magnetite) deposit was formed by this residual magma in-situ fractional crystallization. The magnetite-apatite rock was crystallized by two vis-a-vis ways at the latest stage in-situ fractional crystallization in the rhythmic layers. The result was light apatite layer below heavy the magnetite-apatite layer, formed an "inversion" phenomenon.
Resumo:
Anduo area is located in the Central Tibet, the middle segment of the Bangonghu-Nujiang suture. Anduo Block is the northern part of Lhasa terrane. The relationships among the different geological bodies were determined during the 1: 250000 regional geological surveying. Petrography, petrologic geochemistry, isotopic geochemistry and geochronology of igneous rocks from the suture and granitoids from Anduo Block were analyzed systematically as a whole for the first time. Then, their tectonic setting and history are discussed.Anduo ophiolitic melange consists of metamorphic peridotites, cumulates, plagiogranites, sheeted dykes swarm, pillow lava and radiolarian cherts. The concentration of Cr and Ni in the metamorphic peridotites is very high, with Mg# about 0.94 ~ 0.97, higher 87Sr/86Sr and Pb isotopic ratios, and lower 143Nd/i44Nd ratio. LREE is enriched relative to HREE and positive Eu anomaly is very clear. The REE distribution curve is U shape. Nb and Ta anomalies from cumulate gabbro and sheeted dyke swarm are not clear, while that are slightly negative from pillow lava. Plagiogranite belongs to strong calc-alkaline series with high Si, middle Al, low Fe, Mg and low K contents. Eu anomaly (~ 1.23) from plagiogranites is slightly positive. The character of all components of ophiolite is similar to that of the MORB, while to some extent the ophiolite was influenced by crustal material. Anduo ophiolite formed in a mature back-arc basin. Additionally, intermediate acidity volcanic rocks within Anduo phiolite melange are island arc calc-alkline rocks related to ocean subduction.The early-middle Jurassic plutonic rocks are tonalite, granodiorite bearing-phenocryst, magaporphyritic hornblende monzogranite, magaporphyritic monzogranite, monzogranite bearing-phenocryst and syenogranite in turn. They belong to calc-alkaline series which developed from middle K to high K series temporally. REE distribution curves of all plutonic rocks are similar and parallel to each other. SREE and negative Eu anomaly values decrease. In the multi-element spider diagram, the curves of different plutons are similar to each other, but troughs of Nb, Sr, P and Ti from young plutons become more evident. This suggests that thereare some closely petrogenetic affinities among plutonic rocks which make up amagma plutonism cycle of the early-middle Jurassic. Magma source is mainly crustal,but abundant mafic microgranular enclaves within granitoids indicate that crastalmagma should be mixed with mantle-derived magma and the mantle-derived magmadecreased subsequently. Tonalite has features of I-type granite, magaporphyriticmonzogranite is transition type, and monzogranite bearing-phenocryst is S-typegranite. The characteristic of granitoids from Anduo Block suggest that the formingtectonic setting is active continental margin.Reliable zircon U-Pb SHRIMP ages are obtained in the study area firstly. Plagiogranite from the Anduo ophiolite of the Bangonghu-Nujiang suture is 175.1 Ma, and granitoids from Anduo Block is 172.6-185.4 Ma. Additionally, plagioclase from the plagiogranite dates a 40Ar/39Ar age of 144 Ma, while biotite and hornblend from granitoids of Anduo Block give a 163-165 Ma.Similar cooling ages of plagiogranite from the Anduo ophiolitic melange and granitoids from Anduo Block and the spatial distribution of the ophiolitic rocks between Anduo, Naqu, and Shainzha area suggest that bilateral subduction of the Bangonghu-Nujiang oceanic basin took place in the early-middle Jurassic. During this subduction, Anduo ophiolitic rocks were related to north subduction of the Bangonghu-Nujiang oceanic basin and Anduo back-arc basin spreading, while granitoids from Anduo Block were related to south subduction.
Resumo:
The platinum-group elements (PGE), including Os, Ir, Ru, Rh, Pt and Pd, axe strongly siderophile and chalcophile. On the basis of melting temperature, the PGE may be divided into two groups: the Ir group (IPGE, >2000°C) consisting of Os, Ir and Ru, and the Pd group (PPGE, <20GO°C) consisting of Rh, Pt and Pd. Because of their unique geochemical properties, PGE provide critical information on global-scale differentiation processes, such as core-mantle segregation, late accretionary history, and core-mantle exchange. In addition, they may be used to identify magma source regions and unravel complex petrogenetic processes including partial melting, melt percolation and metasomatism in the mantle, magma mixing and crustal contamination in magma chambers and melt crystallization.Compared with other rocks, (ultra)mafic rocks have lower REE content but higher PGE content, so PGE have advantages in studying the petrogeneses and evolution of them. In this study, we selected (ultra)mafic rocks collected in Dabie Orogen and volcanic rocks from Fuxin Region. Based on the distribution and behaviour of platinum-group elements, combined with other elements, we speculate the magma evolution and source mantle of these (ultra)mafic rocks and volcanic rocks.Many (ultra)mafic rocks are widely distributed in Dabie Region. According to their deformation and metamorphism, we classed them into three types. One is intrusive (ultra)mafic rocks, which are generally undeformed and show no or little sign of metamorphism, such as (ultra)mafic intrusions in Shacun, zhujiapu, Banzhufan, qingshan, Xiaohekou, Jiaoziyan, Renjiawan and Daoshichong. The other one is ultrahigh pressure metamorphic (ultra)mafic rocks, some of them appeared as eelogites, such as complex in Bixiling and adjacent Maowu. Another one is intense deformed and metamorphic, termed as tectonic slice, alpine-type (ultra)mafic rocks. The most representative is Raobazhai and Dahuapin. However, there are many controversies about the formation of those (ultra)mafic rocks. Here, we select typical rocks of the three types. The PGE were determined by inductively coupled plasma mass spectrometry (ICP-MS) ater NiS fire-assay and tellurium co-precipitation.The PGE tracing shows that three components are needed in the source of the cretaceous (uitra)mafic intrusions. They could be old enriched sub-continental lithospheric mantle, lower crust and depleted asthenospheric mantle. The pattern of PGE also shows the primitive magma of these intrusions underwent S saturation. According to palladium, we can conclude that the mantle enrich in PGE. Distribution of PGE in Bixiiing and Maowu (ultra)mafic rocks display they are products of magmas fractional crystallization. The (ultra)mafic rocks in Bixiiing and Maowu are controlled by various magmatic processes and the source mantle is depleted in PGE. Of interest is that the mantle produced UHP (ultra)mafic rocks are PGE-depleted, whereas the mantle of cretaceous (ultra)mafic intrusions are enrich in PGE. This couldindicate that the mantle change from PGE-enriched to PGE-depleted during120-OOMa, which in accord with the time of tectonic system change in the East China. At the same time, (ultra)mafic intrusions in cretaceous took information of deep mantle, which means the processes in deep mantle arose structural movement in the crust The character of PGE in alpine-type (ultra)mafic rocks declared that the rocks had experienced two types of metasomatic processes - hydrous melt derived from slab and silicate melt. In addition, we analyze the platinum-group elements in volcanic rocks on the northern margin of the North China Craton, Fuxin. The volcanic rocks characterized by negative anomalies of platinum. This indicates that platinum alloys, which may host some Pt resided in the mantle. The PGE patterns also show that Jianguo alkali basalts derived from asthenospheric mantle source, but wulahada high-Mg andesites derived from lithospheric mantle.
Resumo:
新疆阿尔泰可可托海3号伟晶岩脉磷灰石矿物中稀土元素(REE)和其他微量元素的ICP-MS分析结果表明,Y/Ho,Zr/Hf和Nb/Ta明显偏离球粒陨石中对应的比值,并存在显著的REE“四分组效应”,REE“四分组效应”量化特征参数TE3,4主要与Y/Ho,Nb/Ta分异程度有关,与δEu负异常演化程度相一致,锰铝榴石也呈现REE“四分组效应”和Y/Ho,Nb/Ta显著分异,指示REE“四分组效应”是形成伟晶岩熔体的一个基本特征,并不是由富LREE矿物(如独居石)和富HREE矿物(如四榴子石)结晶引起的残余熔体REE含量的异常变化,其机制可能是富F,B和P的过铝质窝本与含水流体间相互作用,REE在流体相/熔体相的分配受温度,压力和流体相组成复合控制的综合结果。
Resumo:
以平坝白云岩风化壳剖面为例,主要利用化学连续提取的方法,结合透射电镜的分析,对碳酸盐岩风化壳岩-土界面附近的稀土超常富集层中REE的赋存状态进行了研究,获得了REE在水溶态及可交换态(相态Ⅰ)、碳酸盐结合态及专性吸附态(相态Ⅱ)、非晶质氧化铁锰结合态(相态Ⅲ)、晶质氧化铁锰结合态(相态Ⅳ)、有机质及硫化物结合态(相态Ⅴ)和残渣态(相态Ⅵ)等6种相态的含量及变化规律。结果表明,REE在富集层中主要以专性吸附态、残渣态和有机态为主。风化前缘可溶态稀土所占比例较高,为稀土在风化壳中的迁移、转化提供可能;基岩中原生含磷稀土矿物的风化产生的稀土磷酸盐矿物的聚集导致了残渣态稀土大量存在于风化前缘;此外,由于风化淋溶的不断进行,可溶态的REE在高的pH值条件与剖面中的有机质、铁锰氧化物和粘土矿物共同作用下沉淀、富集,也导致了风化前缘稀土的超常富集。