攀西地区红格、新街岩体的岩石地球化学特征


Autoria(s): 胡素芳
Contribuinte(s)

周新华

Data(s)

2001

Resumo

The mafic-ultramafic layered intrusions in the Panxi, China contain large V-Ti-magnetite deposits. These layered intrusions are related with the Emeishan continental flood basalts in space and time. Two layered intrusions, Hongge and Xinjie have clear PGE mineralization at the base of the intrusions. Thus the detailed investigations of these two intrusions not only have a geological but also have an economic significance. This thesis aims to characterize the elemental and Sr-Nd isotopic features of diverse rock zones within the intrusion on the basis of systematic studies of the major, trace element and isotope ratios, therefore to constrain the petrogenesis, mantle source and evolution of the Hongge and Xinjie intrusions. Generally, both Hongge and Xinjie intrusions show the same Fe-Ti-rich and Si-M-poor characteristics. They are also enriched in rare-earth elements (REE) and large-ion lithophile elements (LILE) as well as in Sr-Nd isotope ratios (Hongge: initial Sr = 0.7056-0.7076, ε_(Nd)(t) and (Nd/Sm)_N-ε_(Nd)(t) plots, the Hongge intrusion has a similar elemental and isotopic features to the Emeishan low-Ti (LT) basalts, whereas the Xinjie intrusion was close to the Emeishan high-Ti (HT) basalt. Therefore, the Hongge intrusion may be co-genetic with the LT basalt, formed by the partial melting of the spinel-garnet transition mantle that had a slight enriched isotope character. In contrast, the Xinjie intrusion and the HT basalts are probably derived from the garnet-phases mantle with a primitive isotope character. The involvement of the components of mantle wedge into the source is considered to be the major reason of the REE and LILE enrichment and Nd isotope depletion in the Xinjie intrusion. In contrast with the systematic variations in TiO_2 content, Mg#, transition elements (Ni, Cu, Co), REE concentrations, and La/Yb, La/Sm ratios from the lower zone to upper zone, the different rock zones of the Hongge intrusion have no clear Sr-Nd isotope variations. This suggests that the Hongge intrusions were formed by the crystal fractionation from the same magma source. The rhythm may be formed by slow injection of the co-genetic magma during the crystal fractionation. The increase in K_2O and Al_2O_3 contents, REE abundance, and the degree of the REE fractionation in the base of the intrusion, together with the relatively low ε_(Nd)(t) value, may imply that the base of the Hongge intrusion was contaminated with the local crust rocks. Xinjie intrusion shows the clearly elemental and isotopic differences in diverse cumulus cycles. The observation of the systematic variations in TiO_2 content, Mg# value, transition elements (Ni, Cu, Co), REE concentrations, and La/Yb, La/Sm ratios in first cycle was not occurred in second cumulus cycle. In addition, the ε_(Nd)(t) value in second cumulus cycle is apparently higher than that of the first one. Thus the abruptly elemental and isotopic changes at the base of second cycle demonstrate that there is considerable new and depleted magma addition to the residue magma after the crystallization of the first cycle. These features are very similar to those of the well-known PGE-rich Bushveld and Stillwater layered intrusions. The PGE mineralization in Xinjie intrusion is much better than in Hongge intrusion. Therefore, the layered intrusion similar to the Xinjie in Panxi area posses the better prospects for the PGE deposits.

Identificador

http://159.226.119.211/handle/311031/1922

http://www.irgrid.ac.cn/handle/1471x/174597

Idioma(s)

中文

Fonte

攀西地区红格、新街岩体的岩石地球化学特征.胡素芳[d].中国科学院地质与地球物理研究所,2001.20-25

Tipo

学位论文