915 resultados para Automatic classifier


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is the most prevalent form of progressive degenerative dementia and it has a high socio-economic impact in Western countries, therefore is one of the most active research areas today. Its diagnosis is sometimes made by excluding other dementias, and definitive confirmation must be done trough a post-mortem study of the brain tissue of the patient. The purpose of this paper is to contribute to improvement of early diagnosis of AD and its degree of severity, from an automatic analysis performed by non-invasive intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET), that have the great advantage of being non invasive, low cost and without any side effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. METHOD: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). RESULTS: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. CONCLUSION: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables like soil gas radon measurements as well as more detailed geological information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In fetal brain MRI, most of the high-resolution reconstruction algorithms rely on brain segmentation as a preprocessing step. Manual brain segmentation is however highly time-consuming and therefore not a realistic solution. In this work, we assess on a large dataset the performance of Multiple Atlas Fusion (MAF) strategies to automatically address this problem. Firstly, we show that MAF significantly increase the accuracy of brain segmentation as regards single-atlas strategy. Secondly, we show that MAF compares favorably with the most recent approach (Dice above 0.90). Finally, we show that MAF could in turn provide an enhancement in terms of reconstruction quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a multi-stage classifier for magnetic resonance spectra of human brain tumours which is being developed as part of a decision support system for radiologists. The basic idea is to decompose a complex classification scheme into a sequence of classifiers, each specialising in different classes of tumours and trying to reproducepart of the WHO classification hierarchy. Each stage uses a particular set of classification features, which are selected using a combination of classical statistical analysis, splitting performance and previous knowledge.Classifiers with different behaviour are combined using a simple voting scheme in order to extract different error patterns: LDA, decision trees and the k-NN classifier. A special label named "unknown¿ is used when the outcomes of the different classifiers disagree. Cascading is alsoused to incorporate class distances computed using LDA into decision trees. Both cascading and voting are effective tools to improve classification accuracy. Experiments also show that it is possible to extract useful information from the classification process itself in order to helpusers (clinicians and radiologists) to make more accurate predictions and reduce the number of possible classification mistakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peer-reviewed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer׳s disease (AD) is the most common type of dementia among the elderly. This work is part of a larger study that aims to identify novel technologies and biomarkers or features for the early detection of AD and its degree of severity. The diagnosis is made by analyzing several biomarkers and conducting a variety of tests (although only a post-mortem examination of the patients’ brain tissue is considered to provide definitive confirmation). Non-invasive intelligent diagnosis techniques would be a very valuable diagnostic aid. This paper concerns the Automatic Analysis of Emotional Response (AAER) in spontaneous speech based on classical and new emotional speech features: Emotional Temperature (ET) and fractal dimension (FD). This is a pre-clinical study aiming to validate tests and biomarkers for future diagnostic use. The method has the great advantage of being non-invasive, low cost, and without any side effects. The AAER shows very promising results for the definition of features useful in the early diagnosis of AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degradation of the catalytic filaments is the main factor limiting the industrial implementation of the hot wire chemical vapor deposition (HWCVD) technique. Up to now, no solution has been found to protect the catalytic filaments used in HWCVD without compromising their catalytic activity. Probably, the definitive solution relies on the automatic replacement of the catalytic filaments. In this work, the results of the validation tests of a new apparatus for the automatic replacement of the catalytic filaments are reported. The functionalities of the different parts have been validated using a 0.2 mm diameter tungsten filament under uc-Si:H deposition conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In liberalized electricity markets, which have taken place in many countries over the world, the electricity distribution companies operate in the competitive conditions. Therefore, accurate information about the customers’ energy consumption plays an essential role for the budget keeping of the distribution company and for correct planning and operation of the distribution network. This master’s thesis is focused on the description of the possible benefits for the electric utilities and residential customers from the automatic meter reading system usage. Major benefits of the AMR, illustrated in the thesis, are distribution network management, power quality monitoring, load modelling, and detection of the illegal usage of the electricity. By the example of the power system state estimation, it was illustrated that even the partial installation of the AMR in the customer side leads to more accurate data about the voltage and power levels in the whole network. The thesis also contains the description of the present situation of the AMR integration in Russia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In general, laboratory activities are costly in terms of time, space, and money. As such, the ability to provide realistically simulated laboratory data that enables students to practice data analysis techniques as a complementary activity would be expected to reduce these costs while opening up very interesting possibilities. In the present work, a novel methodology is presented for design of analytical chemistry instrumental analysis exercises that can be automatically personalized for each student and the results evaluated immediately. The proposed system provides each student with a different set of experimental data generated randomly while satisfying a set of constraints, rather than using data obtained from actual laboratory work. This allows the instructor to provide students with a set of practical problems to complement their regular laboratory work along with the corresponding feedback provided by the system's automatic evaluation process. To this end, the Goodle Grading Management System (GMS), an innovative web-based educational tool for automating the collection and assessment of practical exercises for engineering and scientific courses, was developed. The proposed methodology takes full advantage of the Goodle GMS fusion code architecture. The design of a particular exercise is provided ad hoc by the instructor and requires basic Matlab knowledge. The system has been employed with satisfactory results in several university courses. To demonstrate the automatic evaluation process, three exercises are presented in detail. The first exercise involves a linear regression analysis of data and the calculation of the quality parameters of an instrumental analysis method. The second and third exercises address two different comparison tests, a comparison test of the mean and a t-paired test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the modern warfare there is an active development of a new trend connected with a robotic warfare. One of the critical elements of robotics warfare systems is an automatic target recognition system, allowing to recognize objects, based on the data received from sensors. This work considers aspects of optical realization of such a system by means of NIR target scanning at fixed wavelengths. An algorithm was designed, an experimental setup was built and samples of various modern gear and apparel materials were tested. For pattern testing the samples of actively arm engaged armies camouflages were chosen. Tests were performed both in clear atmosphere and in the artificial extremely humid and hot atmosphere to simulate field conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The skill of programming is a key asset for every computer science student. Many studies have shown that this is a hard skill to learn and the outcomes of programming courses have often been substandard. Thus, a range of methods and tools have been developed to assist students’ learning processes. One of the biggest fields in computer science education is the use of visualizations as a learning aid and many visualization based tools have been developed to aid the learning process during last few decades. Studies conducted in this thesis focus on two different visualizationbased tools TRAKLA2 and ViLLE. This thesis includes results from multiple empirical studies about what kind of effects the introduction and usage of these tools have on students’ opinions and performance, and what kind of implications there are from a teacher’s point of view. The results from studies in this thesis show that students preferred to do web-based exercises, and felt that those exercises contributed to their learning. The usage of the tool motivated students to work harder during their course, which was shown in overall course performance and drop-out statistics. We have also shown that visualization-based tools can be used to enhance the learning process, and one of the key factors is the higher and active level of engagement (see. Engagement Taxonomy by Naps et al., 2002). The automatic grading accompanied with immediate feedback helps students to overcome obstacles during the learning process, and to grasp the key element in the learning task. These kinds of tools can help us to cope with the fact that many programming courses are overcrowded with limited teaching resources. These tools allows us to tackle this problem by utilizing automatic assessment in exercises that are most suitable to be done in the web (like tracing and simulation) since its supports students’ independent learning regardless of time and place. In summary, we can use our course’s resources more efficiently to increase the quality of the learning experience of the students and the teaching experience of the teacher, and even increase performance of the students. There are also methodological results from this thesis which contribute to developing insight into the conduct of empirical evaluations of new tools or techniques. When we evaluate a new tool, especially one accompanied with visualization, we need to give a proper introduction to it and to the graphical notation used by tool. The standard procedure should also include capturing the screen with audio to confirm that the participants of the experiment are doing what they are supposed to do. By taken such measures in the study of the learning impact of visualization support for learning, we can avoid drawing false conclusion from our experiments. As computer science educators, we face two important challenges. Firstly, we need to start to deliver the message in our own institution and all over the world about the new – scientifically proven – innovations in teaching like TRAKLA2 and ViLLE. Secondly, we have the relevant experience of conducting teaching related experiment, and thus we can support our colleagues to learn essential know-how of the research based improvement of their teaching. This change can transform academic teaching into publications and by utilizing this approach we can significantly increase the adoption of the new tools and techniques, and overall increase the knowledge of best-practices. In future, we need to combine our forces and tackle these universal and common problems together by creating multi-national and multiinstitutional research projects. We need to create a community and a platform in which we can share these best practices and at the same time conduct multi-national research projects easily.