878 resultados para ANTIFUNGAL CHITINASE
Resumo:
The antifungal drug, miconazole nitrate, inhibits the growth of several species of Candida. Candida albicans, one of the pathogenic species, was totally inhibited at a concentration of approximately 10 μg/ml. Endogenous respiration was unaffected by the drug at a concentration as high as 100 μg/ml, whereas exogenous respiration was markedly sensitive and inhibited to an extent of 85%. The permeability of the cell membrane was changed as evidenced by the leakage of 260-nm absorbing materials, amino acids, proteins, and inorganic cations. The results we present clearly show that the drug alters the cellular permeability, and thus the exogenous respiration becomes sensitive to the drug.
Resumo:
Ginger is considered by many people to be the outstanding member among 1400 other species in the family Zingiberaceae. Not only it is a valuable spice used by cooks throughout the world to impart unique flavour to their dishes but it also has a long track record in some Chinese and Indian cultures for treating common human ailments such as colds and headaches. Ginger has recently attracted considerable attention for its anti-inflammatory, antibacterial and antifungal properties. However, ginger as a crop is also susceptible to at least 24 different plant pathogens, including viruses, bacteria, fungi and nematodes. Of these, Pythium spp. (within the kingdom Stramenopila, phyllum Oomycota) are of most concern because various species can cause rotting and yield loss on ginger at any of the growth stages including during postharvest storage. Pythium gracile was the first species in the genus to be reported as a ginger pathogen, causing Pythium soft rot disease in India in 1907. Thereafter, numerous other Pythium spp. have been recorded from ginger growing regions throughout the world. Today, 15 Pythium species have been implicated as pathogens of the soft rot disease. Because accurate identification of a pathogen is the cornerstone of effective disease management programs, this review will focus on how to detect, identify and control Pythium spp. in general, with special emphasis on Pythium spp. associated with soft rot on ginger.
Resumo:
The antifungal drug, miconazole nitrate, inhibits the growth of several species of Candida. Candida albicans, one of the pathogenic species, was totally inhibited at a concentration of approximately 10 µg/ml. Endogenous respiration was unaffected by the drug at a concentration as high as 100 µg/ml, whereas exogenous respiration was markedly sensitive and inhibited to an extent of 85%. The permeability of the cell membrane was changed as evidenced by the leakage of 260-nm absorbing materials, amino acids, proteins, and inorganic cations. The results we present clearly show that the drug alters the cellular permeability, and thus the exogenous respiration becomes sensitive to the drug.
Resumo:
The electronic structures of a series of 4-substituted pyridine N-oxides and 4-nitroquinoline N-oxide are investigated using the simple Pariser-Parr-Pople (PPP), a modified PPP, IEH and MINDO/2 methods. The electronic absorption band maxima and dipole moments are calculated and compared with experimental values. The photoelectron spectra of these compounds are assigned. The nature of the N-oxide group is characterized using the orbital population distributions. The antifungal activity exhibited by some of these compounds is discussed in terms of the nucleophilic frontier electron densities, superdelocalizabilities and electron acceptor properties. The effect of the electron releasing as well as the electron withdrawing substituents on the physico-chemical properties is explained.
Resumo:
Recommendations - 1 To identify a person with diabetes at risk for foot ulceration, examine the feet annually to seek evidence for signs or symptoms of peripheral neuropathy and peripheral artery disease. (GRADE strength of recommendation: strong; Quality of evidence: low) - 2 In a person with diabetes who has peripheral neuropathy, screen for a history of foot ulceration or lower-extremity amputation, peripheral artery disease, foot deformity, pre-ulcerative signs on the foot, poor foot hygiene and ill-fitting or inadequate footwear. (Strong; Low) - 3 Treat any pre-ulcerative sign on the foot of a patient with diabetes. This includes removing callus, protecting blisters and draining when necessary, treating ingrown or thickened toe nails, treating haemorrhage when necessary and prescribing antifungal treatment for fungal infections. (Strong; Low) - 4 To protect their feet, instruct an at-risk patient with diabetes not to walk barefoot, in socks only, or in thin-soled standard slippers, whether at home or when outside. (Strong; Low) - 5 Instruct an at-risk patient with diabetes to daily inspect their feet and the inside of their shoes, daily wash their feet (with careful drying particularly between the toes), avoid using chemical agents or plasters to remove callus or corns, use emollients to lubricate dry skin and cut toe nails straight across. (Weak; Low) - 6 Instruct an at-risk patient with diabetes to wear properly fitting footwear to prevent a first foot ulcer, either plantar or non-plantar, or a recurrent non-plantar foot ulcer. When a foot deformity or a pre-ulcerative sign is present, consider prescribing therapeutic shoes, custom-made insoles or toe orthosis. (Strong; Low) - 7 To prevent a recurrent plantar foot ulcer in an at-risk patient with diabetes, prescribe therapeutic footwear that has a demonstrated plantar pressure-relieving effect during walking (i.e. 30% relief compared with plantar pressure in standard of care therapeutic footwear) and encourage the patient to wear this footwear. (Strong; Moderate) - 8 To prevent a first foot ulcer in an at-risk patient with diabetes, provide education aimed at improving foot care knowledge and behaviour, as well as encouraging the patient to adhere to this foot care advice. (Weak; Low) - 9 To prevent a recurrent foot ulcer in an at-risk patient with diabetes, provide integrated foot care, which includes professional foot treatment, adequate footwear and education. This should be repeated or re-evaluated once every 1 to 3 months as necessary. (Strong; Low) - 10 Instruct a high-risk patient with diabetes to monitor foot skin temperature at home to prevent a first or recurrent plantar foot ulcer. This aims at identifying the early signs of inflammation, followed by action taken by the patient and care provider to resolve the cause of inflammation. (Weak; Moderate) - 11 Consider digital flexor tenotomy to prevent a toe ulcer when conservative treatment fails in a high-risk patient with diabetes, hammertoes and either a pre-ulcerative sign or an ulcer on the distal toe. (Weak; Low) - 12 Consider Achilles tendon lengthening, joint arthroplasty, single or pan metatarsal head resection, or osteotomy to prevent a recurrent foot ulcer when conservative treatment fails in a high-risk patient with diabetes and a plantar forefoot ulcer. (Weak; Low) - 13 Do not use a nerve decompression procedure in an effort to prevent a foot ulcer in an at-risk patient with diabetes, in preference to accepted standards of good quality care. (Weak; Low)
Resumo:
In Africa various species of Combretum, Terminalia and Pteleopsis are used in traditional medicine. Despite of this, some species of these genera have still not been studied for their biological effects to validate their traditional uses. The aim of this work has been to document the ethnomedicinal uses of several species of Combretum and Terminalia in Mbeya region, south-western Tanzania, and to use this information for finding species with good antimicrobial and cytotoxic potential. During a five weeks expedition to Tanzania in spring 1999 sixteen different species of Combretum and Terminalia, as well as Pteleopsis myrtifolia were collected from various locations in the districts of Mbeya, Iringa and Dar-es-Salaam. Traditional healers in seven different villages in the Mbeya region were interviewed in Swahili and Nyakyusa on the medicinal uses of Combretum and Terminalia species shown to them. A questionnaire was used during the interviews. The results of the interviews correlated well between different villages, the same species being used in similar ways in different villages. Of the ten species shown to the healers six were frequently used for treatment of skin diseases, bacterial infections, diarrhea, oedema and wounds. The dried plants were most commonly prepared into hot water decoctions or mixed into maize porridge, Ugali. Infusions made from dried or fresh plant material were also common. Wounds and topical infections were treated with ointments made from the dried plant material mixed with sheep fat. Twenty-one extracts of six species of Combretum and four of Terminalia, collected from Tanzania, were screened for their antibacterial effects against two gram-negative and five gram-positive bacteria, as well as the yeast, Candida albicans, using an agar diffusion method. Most of the screened plants showed substantial antimicrobial activity. A methanolic root extract of T. sambesiaca showed the most potent antibacterial effects of all the plant species screened, and gave a MIC value of 0.9 mg/ml against Enterobacter aerogenes. Also root extracts of T. sericea and T. kaiserana gave excellent antimicrobial effects, and notably a hot water extract of T. sericea was as potent as extracts of this species made from EtOH and MeOH. Thus, the traditional way of preparing T. sericea into hot water decoctions seems to extract antimicrobial compounds. Thirty-five extracts of five species of Terminalia, ten of Combretum and Pteleopsis myrtifolia were screened for their antifungal effects against five species of yeast (Candida spp.) and Cryptococcus neoformans. The species differed from each other to their antifungal effects, some being very effective whereas others showed no antifungal effects. The most effective extracts showed antifungal effects comparable to the standard antibiotics itraconazol and amphotericin B. Species of Terminalia gave in general stronger antifungal effects than those of Combretum. The best effects were obtained with methanolic root extracts of T. sambesiaca, T. sericea and T. kaiserana, and this investigation indicates that decoctions of these species might be used for treatment of HIV-related fungal infections. Twenty-seven crude extracts of eight species of Combretum, five of Terminalia and Pteleopsis myrtifolia were evaluated for their cytotoxic effects against human cancer cell lines (HeLa, cervical carcinoma; MCF 7, breast carcinoma, T 24 bladder carcinoma) and one endothelial cell line (BBCE, bovine brain capillary endothelial cells). The most outstanding effects were obtained with a leaf extract of Combretum fragrans, which nearly totally inhibited the proliferation of T 24 and HeLa cells at a concentration of 25 ug/ml and inhibited 60 % of the growth of the HeLa cells at a concentration of 4.3 ug/ml. The species of Terminalia were less cytotoxically potent than the Combretum species, although T. sericea and T. sambesiaca gave good cytotoxic effects (< 30 % proliferation). In summary this study indicates that some of the species of Terminalia, Combretum and Pteleopsis, used in Tanzanian traditional medicine, are powerful inhibitors of both microbial and cancer cell growth. In depth studies would be needed to find the active compounds behind these biological activities.
Resumo:
The title compound, C24H24N2O3S, exhibits antifungal and antibacterial properties. The compound crystallizes with two molecules in the asymmetric unit, with one molecule exhibiting 'orientational disorder' in the crystal structure with respect to the cyclohexene ring. The o-toluidine groups in both molecules are noncoplanar with the respective cyclohexene-fused thiophene ring. In both molecules, there is an intramolecular N-H...N hydrogen bond forming a pseudo-six-membered ring which locks the molecular conformation and eliminates conformational flexibility. The crystal structure is stabilized by O-H...O hydrogen bonds; both molecules in the asymmetric unit form independent chains, each such chain consisting of alternating 'ordered' and 'disordered' molecules in the crystal lattice.
Resumo:
A macrocyclic hydrazone Schiff base was synthesized by reacting 1,4-dicarbonyl phenyl dihydrazide with 2,6-diformyl-4-methyl phenol and a series of metal complexes with this new Schiff base were synthesized by reaction with Co(II), Ni(II) and Cu(II) metal salts. The Schiff base and its complexes have been characterized by elemental analyses, IR, H-1 NMR, UV-vis, FAB mass, ESR spectra, fluorescence, thermal, magnetic and molar conductance data. The analytical data reveal that the Co(II), Ni(II) and Cu(II) complexes possess 2:1 metal-ligand ratios. All the complexes are non-electrolytes in DMF and DMSO due to their low molar conductance values. Infrared spectral data suggest that the hydrazone Schiff base behaves as a hexadentate ligand with NON NON donor sequence towards the metal ions. The ESR spectral data shows that the metal-ligand bond has considerable covalent character. The electrochemical behavior of the copper(II) complex was investigated by cyclic voltammetry. The Schiff base and its complexes have also been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Shigella dysentery, Micrococcus, Bacillus subtilis, Bacillus cereus and Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Penicillium and Candida albicans) by MIC method. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
The discovery of GH (Glycoside Hydrolase) 19 chitinases in Streptomyces sp. raises the possibility of the presence of these proteins in other bacterial species, since they were initially thought to be confined to higher plants. The present study mainly concentrates on the phylogenetic distribution and homology conservation in GH19 family chitinases. Extensive database searches are performed to identify the presence of GH19 family chitinases in the three major super kingdoms of life. Multiple sequence alignment of all the identified GH19 chitinase family members resulted in the identification of globally conserved residues. We further identified conserved sequence motifs across the major sub groups within the family. Estimation of evolutionary distance between the various bacterial and plant chitinases are carried out to better understand the pattern of evolution. Our study also supports the horizontal gene transfer theory, which states that GH19 chitinase genes are transferred from higher plants to bacteria. Further, the present study sheds light on the phylogenetic distribution and identifies unique sequence signatures that define GH19 chitinase family of proteins. The identified motifs could be used as markers to delineate uncharacterized GH19 family chitinases. The estimation of evolutionary distance between chitinase identified in plants and bacteria shows that the flowering plants are more related to chitinase in actinobacteria than that of identified in purple bacteria. We propose a model to elucidate the natural history of GH19 family chitinases.
Resumo:
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS1) is an autoimmune disease caused by a loss-of function mutation in the autoregulator gene (AIRE). Patients with APECED suffer from chronic mucocutaneous candidosis (CMC) of the oral cavity and oesophagus often since early childhood. The patients are mainly colonized with Candida albicans and decades of exposure to antifungal agents have lead to the development of clinical and microbiological resistance in the treatment of CMC in the APECED patient population in Finland. A high incidence of oral squamous cell carcinoma is associated with oral CMC lesions in the APECED patients over the age of 25. The overall aim of this study was firstly, to investigate the effect of long-term azole exposure on the metabolism of oral C. albicans isolates from APECED patients with CMC and secondly, to analyse the specific molecular mechanisms that are responsible for these changes. The aim of the first study was to examine C. albicans strains from APECED patients and the level of cross-resistance to miconazole, the recommended topical compound for the treatment of oral candidosis. A total of 16% of the strains had decreased susceptibility to miconazole and all of these isolates had decreased susceptibility to fluconazole. Miconazole MICs also correlated with MICs to voriconazole and posaconazole. A significant positive correlation between the years of miconazole exposure and the MICs to azole antifungal agents was also found. These included azoles the patients had not been exposed to. The aim of our second study was to determine if the APECED patients are continuously colonized with the same C. albicans strains despite extensive antifungal treatment and to gain a deeper insight into the genetic changes leading to azole resistance. The strains were typed using MLST and our results confirmed that all patients were persistently colonized with the same or a genetically related strain despite antifungal treatment between isolations. No epidemic strains were found. mRNA expression was analysed by Northern blotting, protein level by western blotting, and TAC1 and ERG11 genes were sequenced. The main molecular mechanisms resulting in azole resistance were gain-of-function mutations in TAC1 leading to over expression of CDR1 and CDR2, genes linked to azole resistance. Several strains had also developed point mutations in ERG11, another gene linked to azole resistance. In the third study we used gas chromatography to test whether the level of carcinogenic acetaldehyde produced by C. albicans strains isolated from APECED patients were different from the levels produced by strains isolated from healthy controls and oral carcinoma patients. Acetaldehyde is a carcinogenic product of alcohol fermentation and metabolism in microbes associated with cancers of the upper digestive tract. In yeast, acetaldehyde is a by-product of the pyruvate bypass that converts pyruvate into acetyl-CoA during fermentation. Our results showed that strains isolated from APECED patients produced mutagenic levels of acetaldehyde in the presence of glucose (100mM, 18g/l) and the levels produced were significantly higher than those from strains isolated from controls and oral carcinoma patients. All strains in the study, however, were found to produce mutagenic levels of acetaldehyde in the presence of ethanol (11mM). The glucose and ethanol levels used in this study are equivalent to those found in food and beverages and our results highlight the role of dietary sugars and ethanol on carcinogenesis. The aims of our fourth study were to research the effect of growth conditions in the levels of acetaldehyde produced by C. albicans and to gain deeper insight into the role of different genes in the pyruvate-bypass in the production of high acetaldehyde levels. Acetaldehyde production in the presence of glucose increased by 17-fold under moderately hypoxic conditions compared to the levels produced under normoxic conditions. Under moderately hypoxic conditions acetaldehyde levels did not correlate with the expression of ADH1 and ADH2, genes catalyzing the oxidation of ethanol to acetaldehyde, or PDC11, the gene catalyzing the oxidation of pyruvate to acetaldehyde but correlated with the expression of down-stream genes ALD6 and ACS1. Our results highlight a problem where indiscriminate use of azoles may influence azole susceptibility and lead to the development of cross-resistance. Despite clinically successful treatment leading to relief of symptoms, colonization by C. albicans strains is persistent within APECED patients. Microevolution and point mutations that occur in strains may lead to the development of azole-resistant isolates and metabolic changes leading to increased production of carcinogenic acetaldehyde.
Resumo:
A Claisen rearrangement and RCM reaction based sequence has been developed for total synthesis of the antifungal sesquiterpenes enokipodins A-D and cuparene-1,4-diol starting from 2,5-dimethoxy-4-methylhydroquinone.
Resumo:
The characteristics of an in vitro polyuridylic acid dependent amino acid incorporating system prepared from germinating macroconidia of Microsporum canis are described. The incorporation of 14C-phenylalanine into polyphenylalanine is dependent on S-30 extract, adenosine triphosphate, magnesium ions and polyuridylic acid. Incorporation is slightly enhanced by yeast transfer ribonucleic acid and pyruvate kinase. The system is highly sensitive to ribonuclease, puromycin and miconazole (an antifungal agent), moderately sensitive to sodium fluoride and much less sensitive to phenethylalcohol, cycloheximide, chloramphenicol and deoxyribonuclease. Cell-free extract from ungerminated conidia has less capacity to synthesize the protein and during germination a marked increase in the protein synthetic activity is observed. The results from experiments wherein ribosomes and S-100 fraction from germinated and ungerminated spores are interchanged, revealed that the defect in the extract from the ungerminated spore is in the ribosomes.
Resumo:
The characteristics of an in vitro polyuridylic acid dependent amino acid incorporating system prepared from germinating macroconidia of Microsporum canis are described. The incorporation of 14C-phenylalanine into polyphenylalanine is dependent on S-30 extract, adenosine triphosphate, magnesium ions and polyuridylic acid. Incorporation is slightly enhanced by yeast transfer ribonucleic acid and pyruvate kinase. The system is highly sensitive to ribonuclease, puromycin and miconazole (an antifungal agent), moderately sensitive to sodium fluoride and much less sensitive to phenethylalcohol, cycloheximide, chloramphenicol and deoxyribonuclease. Cell-free extract from ungerminated conidia has less capacity to synthesize the protein and during germination a marked increase in the protein synthetic activity is observed. The results from experiments wherein ribosomes and S-100 fraction from germinated and ungerminated spores are interchanged, revealed that the defect in the extract from the ungerminated spore is in the ribosomes.
Resumo:
Molecular dynamics simulation studies on polyene antifungal antibiotic amphotericin B, its head-to-tail dimeric structure and lipid - amphotericin B complex demonstrate interesting features of the flexibilities within the molecule and define the optimal interactions for the formation of a stable dimeric structure and complex with phospholipid.