970 resultados para AMBIENT MASS-SPECTROMETRY
Resumo:
The presence of residues of antibiotics, metabolites, and thermal transformation products (TPs), produced during thermal treatment to eliminate pathogenic microorganisms in milk, could represent a risk for people. Cow"s milk samples spiked with enrofloxacin (ENR), ciprofloxacin (CIP), difloxacin (DIF), and sarafloxacin (SAR) and milk samples from cows medicated with ENR were submitted to several thermal treatments. The milk samples were analyzed by liquid chromatography-mass spectrometry (LC-MS) to find and identify TPs and metabolites. In this work, 27 TPs of 4 quinolones and 24 metabolites of ENR were found. Some of these compounds had been reported previously, but others were characterized for the first time, including lactose-conjugated CIP, the formamidation reaction for CIP and SAR, and hydroxylation or ketone formation to produce three different isomers for all quinolones studied.
Resumo:
The presence of residues of antibiotics, metabolites, and thermal transformation products (TPs), produced during thermal treatment to eliminate pathogenic microorganisms in milk, could represent a risk for people. Cow"s milk samples spiked with enrofloxacin (ENR), ciprofloxacin (CIP), difloxacin (DIF), and sarafloxacin (SAR) and milk samples from cows medicated with ENR were submitted to several thermal treatments. The milk samples were analyzed by liquid chromatography-mass spectrometry (LC-MS) to find and identify TPs and metabolites. In this work, 27 TPs of 4 quinolones and 24 metabolites of ENR were found. Some of these compounds had been reported previously, but others were characterized for the first time, including lactose-conjugated CIP, the formamidation reaction for CIP and SAR, and hydroxylation or ketone formation to produce three different isomers for all quinolones studied.
Resumo:
The presence of illicit drugs such as cocaine and marijuana in US paper currency is very well demonstrated. However, there is no published study describing the presence of cocaine and/or other illicit drugs in Brazilian paper currency. In this study, Brazilian banknotes were collected from nine cities, extracted and analyzed by capillary gas chromatography/mass spectrometry, in order to investigate the presence of cocaine. Bills were extracted with deionized water followed by ethyl acetate. Results showed that 93% of the bills presented cocaine in a concentration range of 2.38-275.10 µg/bill.
Resumo:
Monitoring of sewage sludge has proved the presence of many polar anthropogenic pollutants since LC/MS techniques came into routine use. While advanced techniques may improve characterizations, flawed sample processing procedures, however, may disturb or disguise the presence and fate of many target compounds present in this type of complex matrix before analytical process starts. Freeze-drying or oven-drying, in combination with centrifugation or filtration as sample processing techniques were performed followed by visual pattern recognition of target compounds for assessment of pretreatment processes. The results shown that oven-drying affected the sludge characterization, while freeze-drying led to less analytical misinterpretations.
Resumo:
A LC-ESI-MS/MS method was developed and validated according to the European Union decision 2002/657/EC, for the determination of tetracyclines (TCs) in chicken-muscle since Europe is one of the main markets for Brazilian products. Linearity of r > 0.9979, limits of quantification in the range of 7.0-35.0 ng/g, average recoveries of 89.38 - 106.27%, within-day and between-day precision were adequate for all TCs. The decision limit and the detection capability were 93.00-106.46 ng/g and 95.84-114.38 ng/g, respectively. This method is suitable for application in surveillance programmes of residues of TCs in chicken-muscle samples.
Resumo:
A method using LC/ESI-MS/MS for the quantitative analysis of Ochratoxin A in roasted coffee was described. Linearity was demonstrated (r = 0.9175). The limits of detection and quantification were 1.0 and 3.0 ng g-1, respectively. Trueness, repeatability and intermediate precision values were 89.0-108.8%; 2.4-13.7%; 12.5-17.8%, respectively. To the best of our knowledge, this is the first report in which Ochratoxin A in roasted coffee is analysed by LC/ESI-MS/MS, contributing to the field of mycotoxin analysis, and it will be used for future production of Certified Reference Material.
Resumo:
Piplartine (PPTN) is an alkaloid amide found in Piper species that presents different activities. PPTN determination in rat plasma is necessary to better understand its biological effects. The aim of this study was to develop a sensitive LC-MS/MS method for the determination of PPTN in rat plasma. The performance criteria for linearity, sensitivity, precision, accuracy, recovery, and stability have been assessed and were within the recommended guidelines. The validated method proved to be suitable in a pilot study of PPTN kinetic disposition in rat plasma after a single intraperitoneal dose, and represents an appropriate tool to further pharmacokinetic studies.
Resumo:
Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry was used for the identification of forty doping agents. The improvement in the specificity was remarkable, allowing the resolution of analytes that could not be done by one-dimensional chromatographic systems. The sensitivity observed for different classes of prohibited substances was clearly below the value required by the World Anti-Doping Agency. In addition time-of-flight mass spectrometry gives full spectrum for all analytes without any interference from the matrix, resulting in selectivity improvements. These results could support the implementation of an exhaustive monitoring approach for hundreds of doping agents in a single injection.
Resumo:
The purpose of this study was to develop a rapid, simple and sensitive quantitation method for pseudoephedrine (PSE), paracetamol (PAR) and loratadine (LOR) in plasma and pharmaceuticals using liquid chromatography-tandem mass spectrometry with a monolithic column. Separation was achieved using a gradient composition of methanol-0.1% formic acid at a flow rate of 1.0 mL min-1. Mass spectral transitions were recorded in SRM mode. System validation was evaluated for precision, specificity and linearity. Limit of detection for pseudoephedrine, paracetamol, and loratadine were determined to be 3.14, 1.86 and 1.44 ng mL-1, respectively, allowing easy determination in plasma with % recovery of 93.12 to 101.56%.
Resumo:
A sensitive, accurate and simple method using HPLC-MS/MS was developed and validated for levodopa quantitation in human plasma. Analysis was achieved on a pursuit® C18 analytical column (5 µm; 150 x 4.6 mm i.d.) using a mobile phase (methanol and water , 90:10, v/v) containing formic acid 0.5% v/v, after extracting the samples using a simple protein plasma precipitation with perchloric acid. The developed method was validated in accordance with ANVISA guidelines and was successfully applied to a bioequivalence study in 60 healthy volunteers demonstrating the feasibility and reliability of the proposed method.
Resumo:
In this study, the validation of a method for analyzing the uranium (U) concentration in human urine samples by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) was conducted. PROCORAD (the Association for the Promotion of Quality Control in Radiotoxicological Analysis) provided two urine samples spiked with unknown contents of U (Sample A = 33.6 ± 1.0 µg/L and Sample B = 3.3 ± 0.1 µg/L) and one unspiked sample as a blank. The analyses were directly performed on the diluted urine samples (dilution factor = 1:20) in 5% v/v HNO3. The results obtained by ICP-SFMS corresponded well with the reference values, and the limits of detection were 235U = 0.049 × 10-3 µg/L and 238U = 7.37 × 10-3 µg/L. The ICP-SFMS technique has been shown to be successful in the analysis of the U concentration in human urine samples and for the quantification of isotopic ratios.
Resumo:
The human genome comprises roughly 20 000 protein coding genes. Proteins are the building material for cells and tissues, and proteins are functional compounds having an important role in many cellular responses, such as cell signalling. In multicellular organisms such as humans, cells need to communicate with each other in order to maintain a normal function of the tissues within the body. This complex signalling between and within cells is transferred by proteins and their post-translational modifications, one of the most important being phosphorylation. The work presented here concerns the development and use of tools for phosphorylation analysis. Mass spectrometers have become essential tools to study proteins and proteomes. In mass spectrometry oriented proteomics, proteins can be identified and their post-translational modifications can be studied. In this Ph.D. thesis the objectives were to improve the robustness of sample handling methods prior to mass spectrometry analysis for peptides and their phosphorylation status. The focus was to develop strategies that enable acquisition of more MS measurements per sample, higher quality MS spectra and simplified and rapid enrichment procedures for phosphopeptides. Furthermore, an objective was to apply these methods to characterize phosphorylation sites of phosphopeptides. In these studies a new MALDI matrix was developed which allowed more homogenous, intense and durable signals to be acquired when compared to traditional CHCA matrix. This new matrix along with other matrices was subsequently used to develop a new method that combines multiple spectra from different matrises from identical peptides. With this approach it was possible to identify more phosphopeptides than with conventional LC/ESI-MS/MS methods, and to use 5 times less sample. Also, phosphopeptide affinity MALDI target was prepared to capture and immobilise phosphopeptides from a standard peptide mixture while maintaining their spatial orientation. In addition a new protocol utilizing commercially available conductive glass slides was developed that enabled fast and sensitive phosphopeptide purification. This protocol was applied to characterize the in vivo phosphorylation of a signalling protein, NFATc1. Evidence for 12 phosphorylation sites were found, and many of those were found in multiply phosphorylated peptides
Resumo:
Free and total carnitine quantification is important as a complementary test for the diagnosis of unusual metabolic diseases, including fatty acid degradation disorders. The present study reports a new method for the quantification of free and total carnitine in dried plasma specimens by isotope dilution electrospray tandem mass spectrometry with sample derivatization. Carnitine is determined by looking for the precursor of ions of m/z = 103 of N-butylester derivative, and the method is validated by comparison with radioenzymatic assay. We obtained an inter- and intra-day assay coefficient of variation of 4.3 and 2.3, respectively. Free and total carnitine was analyzed in 309 dried plasma spot samples from children ranging in age from newborn to 14 years using the new method, which was found to be suitable for calculating reference age-related values for free and total carnitine (less than one month: 19.3 ± 2.4 and 23.5 ± 2.9; one to twelve months: 28.8 ± 10.2 and 35.9 ± 11.4; one to seven years: 30.7 ± 10.3 and 38.1 ± 11.9; seven to 14 years: 33.7 ± 11.6, and 43.1 ± 13.8 µM, respectively). No difference was found between males and females. A significant difference was observed between neonates and the other age groups. We compare our data with reference values in the literature, most of them obtained by radioenzymatic assay. However, this method is laborious and time consuming. The electrospray tandem mass spectrometry method presented here is a reliable, rapid and automated procedure for carnitine quantitation.
Resumo:
Research on molecular mechanisms of carcinogenesis plays an important role in diagnosing and treating gastric cancer. Metabolic profiling may offer the opportunity to understand the molecular mechanism of carcinogenesis and help to non-invasively identify the potential biomarkers for the early diagnosis of human gastric cancer. The aims of this study were to explore the underlying metabolic mechanisms of gastric cancer and to identify biomarkers associated with morbidity. Gas chromatography/mass spectrometry (GC/MS) was used to analyze the serum metabolites of 30 Chinese gastric cancer patients and 30 healthy controls. Diagnostic models for gastric cancer were constructed using orthogonal partial least squares discriminant analysis (OPLS-DA). Acquired metabolomic data were analyzed by the nonparametric Wilcoxon test to find serum metabolic biomarkers for gastric cancer. The OPLS-DA model showed adequate discrimination between cancer and non-cancer cohorts while the model failed to discriminate different pathological stages (I-IV) of gastric cancer patients. A total of 44 endogenous metabolites such as amino acids, organic acids, carbohydrates, fatty acids, and steroids were detected, of which 18 differential metabolites were identified with significant differences. A total of 13 variables were obtained for their greatest contribution in the discriminating OPLS-DA model [variable importance in the projection (VIP) value >1.0], among which 11 metabolites were identified using both VIP values (VIP >1) and the Wilcoxon test. These metabolites potentially revealed perturbations of glycolysis and of amino acid, fatty acid, cholesterol, and nucleotide metabolism of gastric cancer patients. These results suggest that gastric cancer serum metabolic profiling has great potential in detecting this disease and helping to understand its metabolic mechanisms.
Resumo:
Acylcarnitine profiling by electrospray ionization tandem mass spectrometry (ESI-MS/MS) is a potent tool for the diagnosis and screening of fatty acid oxidation and organic acid disorders. Few studies have analyzed free carnitine and acylcarnitines in dried blood spots (DBS) of umbilical cord blood (CB) and the postnatal changes in the concentrations of these analytes. We have investigated these metabolites in healthy exclusively breastfed neonates and examined possible effects of birth weight and gestational age. DBS of CB were collected from 162 adequate for gestational age neonates. Paired DBS of heel-prick blood were collected 4-8 days after birth from 106 of these neonates, the majority exclusively breastfed. Methanol extracts of DBS with deuterium-labeled internal standards were derivatized before analysis by ESI-MS/MS. Most of the analytes were measured using a full-scan method. The levels of the major long-chain acylcarnitines, palmitoylcarnitine, stearoylcarnitine, and oleoylcarnitine, increased by 27, 12, and 109%, respectively, in the first week of life. Free carnitine and acetylcarnitine had a modest increase: 8 and 11%, respectively. Propionylcarnitine presented a different behavior, decreasing 9% during the period. The correlations between birth weight or gestational age and the concentrations of the analytes in DBS were weak (r £ 0.20) or nonsignificant. Adaptation to breast milk as the sole source of nutrients can explain the increase of these metabolites along the early neonatal period. Acylcarnitine profiling in CB should have a role in the early detection of metabolic disorders in high-risk neonates.