996 resultados para 3D Transition
Resumo:
Systems composed of distinct operational modes are a common necessity for embedded applications with strict timing requirements. With the emergence of multi-core platforms protocols to handle these systems are required in order to provide this basic functionality.In this work a description on the problems of creating an effective mode-transition protocol are presented and it is proven that in some cases previous single-core protocols can not be extended to handle the mode-transition in multi-core.
Resumo:
We consider the global scheduling problem of multimode real-time systems upon identical multiprocessor platforms. During the execution of a multimode system, the system can change from one mode to another such that the current task set is replaced with a new task set. Thereby, ensuring that deadlines are met requires not only that a schedulability test is performed on tasks in each mode but also that (i) a protocol for transitioning from one mode to another is specified and (ii) a schedulability test for each transition is performed. In this paper, we extend the synchronous transition protocol SM-MSO in order to take into account mode-independent tasks [1], i.e., tasks of which the execution pattern must not be jeopardized by the mode changes.
Resumo:
Dissertação apresentada para a obtenção do grau de Doutor em Engenharia Química, especialidade Engenharia da Reacção Química, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
3D laser scanning is becoming a standard technology to generate building models of a facility's as-is condition. Since most constructions are constructed upon planar surfaces, recognition of them paves the way for automation of generating building models. This paper introduces a new logarithmically proportional objective function that can be used in both heuristic and metaheuristic (MH) algorithms to discover planar surfaces in a point cloud without exploiting any prior knowledge about those surfaces. It can also adopt itself to the structural density of a scanned construction. In this paper, a metaheuristic method, genetic algorithm (GA), is used to test this introduced objective function on a synthetic point cloud. The results obtained show the proposed method is capable to find all plane configurations of planar surfaces (with a wide variety of sizes) in the point cloud with a minor distance to the actual configurations. © 2014 IEEE.
Resumo:
Two new metal- organic compounds {[Cu-3(mu(3)-4-(p)tz)(4)(mu(2)-N-3)(2)(DMF)(2)](DMF)(2)}(n) (1) and {[Cu(4ptz) (2)(H2O)(2)]}(n) (2) {4-ptz = 5-(4-pyridyl)tetrazolate} with 3D and 2D coordination networks, respectively, have been synthesized while studying the effect of reaction conditions on the coordination modes of 4-pytz by employing the [2 + 3] cycloaddition as a tool for generating in situ the 5-substituted tetrazole ligands from 4-pyridinecarbonitrile and NaN3 in the presence of a copper(II) salt. The obtained compounds have been structurally characterized and the topological analysis of 1 discloses a topologically unique trinodal 3,5,6-connected 3D network which, upon further simplification, results in a uninodal 8-connected underlying net with the bcu (body centred cubic) topology driven by the [Cu-3(mu(2)-N-3)(2)] cluster nodes and mu(3)-4-ptz linkers. In contrast, the 2D metal-organic network in 2 has been classified as a uninodal 4-connected underlying net with the sql [Shubnikov tetragonal plane net] topology assembled from the Cu nodes and mu(2)-4-ptz linkers. The catalytic investigations disclosed that 1 and 2 act as active catalyst precursors towards the microwave-assisted homogeneous oxidation of secondary alcohols (1-phenylethanol, cyclohexanol, 2-hexanol, 3-hexanol, 2-octanol and 3-octanol) with tert-butylhydroperoxide, leading to the yields of the corresponding ketones up to 86% (TOF = 430 h(-1)) and 58% (TOF = 290 h(-1)) in the oxidation of 1-phenylethanol and cyclohexanol, respectively, after 1 h under low power ( 10 W) microwave irradiation, and in the absence of any added solvent or additive.
Resumo:
We directly visualize the response of nematic liquid crystal drops of toroidal topology threaded in cellulosic fibers, suspended in air, to an AC electric field and at different temperatures over the N-I transition. This new liquid crystal system can exhibit non-trivial point defects, which can be energetically unstable against expanding into ring defects depending on the fiber constraining geometries. The director anchoring tangentially near the fiber surface and homeotropically at the air interface makes a hybrid shell distribution that in turn causes a ring disclination line around the main axis of the fiber at the center of the droplet. Upon application of an electric field, E, the disclination ring first expands and moves along the fiber main axis, followed by the appearance of a stable "spherical particle" object orbiting around the fiber at the center of the liquid crystal drop. The rotation speed of this particle was found to vary linearly with the applied voltage. This constrained liquid crystal geometry seems to meet the essential requirements in which soliton-like deformations can develop and exhibit stable orbiting in three dimensions upon application of an external electric field. On changing the temperature the system remains stable and allows the study of the defect evolution near the nematic-isotropic transition, showing qualitatively different behaviour on cooling and heating processes. The necklaces of such liquid crystal drops constitute excellent systems for the study of topological defects and their evolution and open new perspectives for application in microelectronics and photonics.
Resumo:
We comment on the nature of the ordering transition of a model of equilibrium polydisperse rigid rods on the square lattice, which is reported by Lopez et al. to exhibit random percolation criticality in the canonical ensemble, in sharp contrast to (i) our results of Ising criticality for the same model in the grand canonical ensemble [Phys. Rev. E 82, 061117 (2010)] and (ii) the absence of exponent(s) renormalization for constrained systems with logarithmic specific-heat anomalies predicted on very general grounds by Fisher [Phys. Rev. 176, 257 (1968)].
Resumo:
This paper reports on the creation of an interface for 3D virtual environments, computer-aided design applications or computer games. Standard computer interfaces are bound to 2D surfaces, e.g., computer mouses, keyboards, touch pads or touch screens. The Smart Object is intended to provide the user with a 3D interface by using sensors that register movement (inertial measurement unit), touch (touch screen) and voice (microphone). The design and development process as well as the tests and results are presented in this paper. The Smart Object was developed by a team of four third-year engineering students from diverse scientific backgrounds and nationalities during one semester.
Resumo:
Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5°C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.
Resumo:
Dissertação apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Geológica (Georrecursos)
Resumo:
Studying changes in brain activation according to the valence of emotion-inducing stimuli is essential in the research on emotions. Due to the ecological potential of virtual reality, it is also important to examine whether brain activation in response to emotional stimuli can be modulated by the three-dimensional (3D) properties of the images. This study uses functional Magnetic Resonance Imaging to compare differences between 3D and standard (2D) visual stimuli in the activation of emotion-related brain areas. The stimuli were organized in three virtual-reality scenarios, each with a different emotional valence (pleasant, unpleasant and neutral). The scenarios were presented in a pseudo-randomized order in the two visualization modes to twelve healthy males. Data were analyzed through a GLM-based fixed effects procedure. Unpleasant and neutral stimuli activated the right amygdala more strongly when presented in 3D than in 2D. These results suggest that 3D stimuli, when used as “building blocks” for virtual environments, can induce increased emotional loading, as shown here through neuroimaging.
Resumo:
Introdução – A escolha do tratamento depende de vários fatores, incluindo o estado clínico e prognóstico de cada doente. Estes fatores desempenham um papel importante na escolha da intervenção terapêutica em metástases ósseas. A deteção precoce e o tratamento adequado podem melhorar a qualidade de vida e independência funcional dos doentes. Metodologia – Este artigo pretende realizar uma revisão sistemática da literatura dos últimos 15 anos, identificando os diferentes tipos de fracionamentos (fração única versus múltiplas frações) e técnicas utilizadas em radioterapia no tratamento de metástases ósseas. Resultados – Os recentes avanços na tecnologia e nas técnicas de tratamento de radioterapia ajudam na distribuição de doses altamente conformacionais e com orientação por imagem para uma entrega mais precisa do tratamento. A radioterapia estereotáxica corporal (SBRT, do acrónimo inglês stereotactic body radiotherapy) permite delimitar e aumentar a dose nos tumores a irradiar. No caso das metástases ósseas, os resultados de controlo local do tumor e da dor têm-se revelado promissores. A radioterapia convencional de 8Gyx1, no entanto, continua a ser o tratamento mais indicado nos doentes paliativos. Conclusão – O tratamento de metástases ósseas é complexo e uma abordagem multidisciplinar é sempre necessária. O tratamento deve ser individualizado para se adequar aos sintomas e estado clínico de cada doente.
Resumo:
A 70Co-30Ni dendritic alloy was produced on stainless steel by pulse electrodeposition in the cathodic domain, and oxidized by potential cycling. X-ray diffraction (XRD) identified the presence of two phases and scanning electron microscopy (SEM) evidenced an open 3D highly branched dendritic morphology. After potential cycling in 1 M KOH, SEM and X-ray photoelectron spectroscopy (XPS) revealed, respectively, the presence of thin nanoplates, composed of Co and Ni oxi-hydroxides and hydroxides over the original dendritic film. Cyclic voltammetry tests showd the presence of redox peaks assigned to the oxidation and reduction of Ni and Co centres in the surface film. Charge/discharge measurements revealed capacity values of 121 mAh g(1) at 1 mA cm(2). The capacity retention under 8000 cycles was above 70%, stating the good reversibility of these redox materials and its suitability to be used as charge storage electrodes. Electrochemical impedance spectroscopy (EIS) spectra, taken under different applied bias, showed that the capacitance increased when the electrode was fully oxidized and decreased when the electrode was reduced, reflecting different states-of-charge of the electrode. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The Upper Cenomanian and Lower Turonian ammonite assemblages from the onshore sectors of the West Portuguese Margin are reviewed after new studies on the type section of Figueira da Foz, and correlative sections of Baixo Mondego. The faunal succession shows a strong contribution of vascoceratids and other ammonites with North African and Tethyan affinities. Euomphaloceras septemseriatum (Cragin, 1893), Kamerunoceras douvillei (Pervinquere, 1907), Fagesia catinus (Mantell, 1822), Neoptychites cephalotus (Courtiller, 1860), and Thomasites rollandi (Thomas & Peron, 1889) are for the first time mentioned to Portugal. The Upper Cenomanian is recognised after a set of 3 assemblage zones: Neolobites vibrayeanus z., Euomphaloceras septemseriatum z ., and Pseudaspidoceras pseudonodosoides z. The carbonate succession shows an important unconformity across the Cenomanian-Turonian boundary, associated to subaerial exposure, and to the development of a palaeokarst over Upper Cenomanian units. The first Lower Turonian carbonates are yielded a single but diverse ammonite assemblage of middle Lower Turonian age (Thomasites rollandi z.). This biozone was previously recognised in Central Tunisia by G. Chancellor et al. (1994).
Resumo:
In this work, plasticizer agents were incorporated in a chitosan based formulation, as a strategy to improve the fragile structure of chitosan based-materials. Three different plasticizers: ethylene glycol, glycerol and sorbitol, were blended with chitosan to prepare 3D dense chitosan specimens. The properties of the obtained structures were assessed for mechanical, microstructural, physical and biocompatibility behavior. The results obtained revealed that from the different specimens prepared, the blend of chitosan with glycerol has superior mechanical properties and good biological behavior, making this chitosan based formulation a good candidate to improve robust chitosan structures for the construction of bioabsorbable orthopedic implants.