999 resultados para 1063
Resumo:
The current-driven dust ion-acoustic instability in a collisional dusty plasma is studied. The effects of dust-charge variation, electron and ion capture by the dust grains, as well as various dissipative mechanisms leading to the changes of the particles momenta, are taken into account. It is shown that the threshold for the excitation of the dust ion-acoustic waves can be high because of the large dissipation rate induced by the dusts. © 1999 American Institute of Physics.
Resumo:
A theory of low-frequency dust-acoustic waves in low-temperature collisional plasmas containing variable-charge impurities is presented. Physical processes such as dust-charge relaxation, ionization-recombination of the electrons and ions, electron and ion elastic collisions with neutrals and dusts, as well as charging collisions with the dusts, are taken into account. Inclusion of these processes allows a balance of the plasma particles and thus a self-consistent determination of the stationary state of the unperturbed plasma. The generalized dispersion relation describing the propagation and damping of the dust acoustic waves is derived and analyzed. © 2000 American Institute of Physics.
Resumo:
The series expansion of the plasma fields and currents in vector spherical harmonics has been demonstrated to be an efficient technique for solution of nonlinear problems in spherically bounded plasmas. Using this technique, it is possible to describe the nonlinear plasma response to the rotating high-frequency magnetic field applied to the magnetically confined plasma sphere. The effect of the external magnetic field on the current drive and field configuration is studied. The results obtained are important for continuous current drive experiments in compact toruses. © 2000 American Institute of Physics.
Resumo:
The aim of this study is to investigate the stress relaxation behavior of single chondrocytes using the Porohyperelastic (PHE) model and inverse Finite Element Analysis (FEA). Firstly, based on Atomic Force Microscopy (AFM) technique, we have found that the chondrocytes exhibited stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid exuding out from the cells during deformation plays the most important role in the stress relaxation. Next, we have applied the inverse FEA technique to determine necessary material parameters for PHE model to simulate this stress relaxation behavior as this model is proven capable of capturing the non-linear behavior and the fluid-solid interaction during the stress relaxation of the single chondrocytes. It is observed that this PHE model can precisely capture the stress relaxation behavior of single chondrocytes and would be a suitable model for cell biomechanics.
Resumo:
Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.
Resumo:
The effect of plasmon oscillations on the DC tunnel current in a gold nanoisland thin film (GNITF) is investigated using low intensity P~1W/cm2 continuous wave lasers. While DC voltages (1–150 V) were applied to the GNITF, it was irradiated with lasers at different wavelengths (k¼473, 532, and 633 nm). Because of plasmon oscillations, the tunnel current increased. It is found that the tunnel current enhancement is mainly due to the thermal effect of plasmon oscillations rather than other plasmonic effects. The results are highly relevant to applications of plasmonic effects in opto-electronic devices.
Resumo:
Two kinds of floating electrode, floating dielectric barrier covered electrode (FDBCE) and floating pin electrode (FPE), which can enhance the performance of plasma jet are reported. The intense discharge between the floating electrode and power electrode decreased the voltage to trigger the plasma jet substantially. The transition of plasma bullet from ring shape to disk shape in the high helium concentration region happened when the floating electrode was totally inside the powered ring electrode. The enhanced electric field between propagating plasma bullet and ground electrode is the reason for this transition. The double plasma bullets happened when part of the FDBCE was outside the powered ring electrode, which is attributed to the structure and surface charge of FDBCE. As part of the FPE was outside the powered ring electrode, the return stroke resulted in a single intensified plasma channel between FPE and ground electrode.
Resumo:
An advanced inductively coupled plasma (ICP)-assisted rf magnetron sputtering deposition method is developed to synthesize regular arrays of pear-shaped ZnO nanodots on a thin SiNx buffer layer pre-deposited onto a silicon substrate. It is shown that the growth of ZnO nanodots obey the cubic root-law behavior. It is also shown that the synthesized ZnO nanodots are highly-uniform, controllable by the experimental parameters, and also feature good structural and photoluminescent properties. These results suggest that this custom-designed ICP-based technique is very effective and highly-promising for the synthesis of property- and size-controllable highly-uniform ZnO nanodots suitable for next-generation light emitting diodes, energy storage, UV nanolasers, and other applications.
Resumo:
Effective control of room-temperature electroluminescence of n-ZnMgO/p-GaN light-emitting diodes (LEDs) over both emission intensity and wavelength is demonstrated. With varied Mg concentration, the intensity of LEDs in the near-ultraviolet region is increased due to the effective radiative recombination in the ZnMgO layer. Furthermore, the emission wavelength is shifted to the green/yellow spectral region by employing an indium-tin-oxide thin film as the dopant source, where thermally activated indium diffusion creates extra deep defect levels for carrier recombination. These results clearly demonstrate the effectiveness of controlled metal incorporation in achieving high energy efficiency and spectral tunability of the n-ZnMgO/p-GaN LED devices.
Resumo:
A combination of laser plasma ablation and strain control in CdO/ZnO heterostructures is used to produce and stabilize a metastable wurtzite CdO nanophase. According to the Raman selection rules, this nanophase is Raman-active whereas the thermodynamically preferred rocksalt phase is inactive. The wurtzite-specific and thickness/strain-dependent Raman fingerprints and phonon modes are identified and can be used for reliable and inexpensive nanophase detection. The wurtzite nanophase formation is also confirmed by x-ray diffractometry. The demonstrated ability of the metastable phase and phonon mode control in CdO/ZnO heterostructures is promising for the development of next-generation light emitting sources and exciton-based laser diodes.
Preparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties
Resumo:
The effect of graphene oxide (GO) on the mechanical properties and the curing reaction of Diglycidyl Ether of Bisphenol A/F and Triethylenetetramine epoxy system was investigated. GO was prepared by oxidation of graphite flakes and characterized by spectroscopic and microscopic techniques. Epoxy nanocomposites were fabricated with different GO loading by solution mixing technique. It was found that incorporation of small amount of GO into the epoxy matrix significantly enhanced the mechanical properties of the epoxy. In particular, model I fracture toughness was increased by nearly 50% with the addition of 0.1 wt. % GO to epoxy. The toughening mechanism was understood by fractography analysis of the tested samples. The more irregular, coarse, and multi-plane fracture surfaces of the epoxy/GO nanocomposites were observed. This implies that the two-dimensional GO sheets effectively disturbed and deflected the crack propagation. At 0.5 wt. % GO, elastic modulus was ~35% greater than neat epoxy. Differential scanning calorimetry (DSC) results showed that GO addition moderately affect the glass transition temperature (Tg) of epoxy. The maximum decrease of Tg by ~7 oC was shown for the nanocomposite with 0.5 wt. % GO. DSC results further revealed that GO significantly hindered the cure reaction in the epoxy system.
Resumo:
In this letter, the performance characteristics of top-gate and dual-gate thin-film transistors (TFTs) with active semiconductor layers consisting of diketopyrrolopyrrole-naphthalene copolymer are described. Optimized top-gate TFTs possess mobilities of up to 1 cm 2 /V s with low contact resistance and reduced hysteresis in air. Dual-gate devices possess higher drive currents as well as improved subthreshold and above threshold characteristics compared to single-gate devices. We also describe the reasons that dual-gate devices result in improved performance. The good stability of this polymer combined with their promising electrical properties make this material a very promising semiconductor for printable electronics.
Resumo:
In this letter, the velocity distributions of charge carriers in high-mobility polymer thin-film transistors (TFTs) with a diketopyrrolopyrrole- naphthalene copolymer (PDPP-TNT) semiconductor active layer are reported. The velocity distributions are found to be strongly dependent on measurement temperatures as well as annealing conditions. Considerable inhomogeneity is evident at low measurement temperatures and for low annealing temperatures. Such transient transport measurements can provide additional information about charge carrier transport in TFTs which are unavailable using steady-state transport measurements.
Resumo:
We describe and discuss the unique electrical characteristics of an organic field-effect transistor in which the active layer consists of a type II lateral heterojunction located approximately midway between the source and drain. The two active semiconductors on either side of the junction transport only one carrier type each, with the other becoming trapped, which leads to devices that operate in only the steady state when there is balanced electron and hole injections from the drain and source. We describe the unique transfer characteristics of such devices in two material systems.
Resumo:
The relationship between charge carrier lifetime and mobility in a bulk heterojunction based organic solar cell, utilizing diketopyrrolopyrole- naphthalene co-polymer and PC71BM in the photoactive blend layer, is investigated using the photoinduced charge extraction by linearly increasing voltage technique. Light intensity, delay time, and temperature dependent experiments are used to quantify the charge carrier mobility and density as well as the temperature dependence of both. From the saturation of photoinduced current at high laser intensities, it is shown that Langevin-type bimolecular recombination is present in the studied system. The charge carrier lifetime, especially in Langevin systems, is discussed to be an ambiguous and unreliable parameter to determine the performance of organic solar cells, because of the dependence of charge carrier lifetime on charge carrier density, mobility, and type of recombination. It is revealed that the relation between charge mobility (μ) and lifetime (τ) is inversely proportional, where the μτ product is independent of temperature. The results indicate that in photovoltaic systems with Langevin type bimolecular recombination, the strategies to increase the charge lifetime might not be beneficial because of an accompanying reduction in charge carrier mobility. Instead, the focus on non-Langevin mechanisms of recombination is crucial, because this allows an increase in the charge extraction rate by improving the carrier lifetime, density, and mobility simultaneously. © 2013 AIP Publishing LLC.