916 resultados para uranium in food


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"TID UC-51."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Also distributed by: Technical Information Services, Oak Ridge, Tennessee.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imprint stamped on t.p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes biblographical references.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The similarity between the Peleg, Pilosof –Boquet–Batholomai and Singh–Kulshrestha models was investigated using the hydration behaviours of whey protein concentrate, wheat starch and whey protein isolate at 30 °C in 100% relative humidity. The three models were shown to be mathematically the same within experimental variations, and they yielded parameters that are related. The models, in their linear and original forms, were suitable (r2 > 0.98) in describing the sorption behaviours of the samples, and are sensitive to the length of the sorption segment used in the computation. The whey proteins absorbed more moisture than the wheat starch, and the isolate exhibited a higher sorptive ability than the concentrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To determine if Campylobacter jejuni grown at 37 and 42 degrees C have different abilities to survive on beef and chicken, and in water. Methods and Results: Beef, chicken and water were separately inoculated with four Camp. jejuni (two poultry and two beef) strains grown at 37 or 42 degrees C. The matrices were stored at similar to 4 degrees C and Camp. jejuni numbers were monitored over time by plate counts. On beef there was a greater decrease in number for two strains (P < 0.05; similar to 0.7 and 1.3 log CFU cm(-2)) grown at 37 degrees C as compared with 42 degrees C. By contrast on chicken there was a decrease in numbers for two strains (P < 0.05; similar to 1.3 and 1 log CFU g(-1)) grown at 42 degrees C as compared with 37 degrees C. In water there was a greater decrease in numbers for all strains (P < 0.05; similar to 3-5.3 log CFU ml(-1)) grown at 42 degrees C as compared with 37 degrees C. Conclusions: Growth temperature influences the survival of Camp. jejuni on food and in water. Significance and Impact of this study: Campylobacter jejuni survival studies need to consider growth temperature to avoid erroneous results. Campylobacter jejuni grown at 37 degrees C, the body temperature of humans and cattle, may represent a greater public health risk in water than those grown at 42 degrees C, the body temperature of poultry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclone stickiness test (CST) technique was applied to measure the stickiness temperature and relative humidity of whey, honey, and apple juice powders. A moisture sorption isotherm study was conducted to analyze the surface moisture content of whey powder. The glass transition temperatures of the sample powder were analyzed using differential scanning calorimetry (DSC). The stickiness results of these products were found within 20 degrees C above their surface glass transition temperatures, which is well within the normal temperature range for glass transition in general. The results obtained by the CST technique were found consistent with DSC values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new Thermal Mechanical Compression Test (TMCT) was applied for glass-rubber transition and melting analyses of food powders and crystals. The TMCT technique measures the phase change of a material based on mechanical changes during the transition. Whey, honey, and apple juice powders were analyzed for their glass-rubber transition temperatures. Sucrose and glucose monohydrate crystals were analyzed for their melting temperatures. The results were compared to the values obtained by conventional DSC and TMA techniques. The new TMCT technique provided the results that were very close to the conventional techniques. This technique can be an alternative to analyze glass-rubber transition of food, pharmaceutical, and chemical dry products.