955 resultados para threshold model
Resumo:
A physically motivated statistical model is used to diagnose variability and trends in wintertime ( October - March) Global Precipitation Climatology Project (GPCP) pentad (5-day mean) precipitation. Quasi-geostrophic theory suggests that extratropical precipitation amounts should depend multiplicatively on the pressure gradient, saturation specific humidity, and the meridional temperature gradient. This physical insight has been used to guide the development of a suitable statistical model for precipitation using a mixture of generalized linear models: a logistic model for the binary occurrence of precipitation and a Gamma distribution model for the wet day precipitation amount. The statistical model allows for the investigation of the role of each factor in determining variations and long-term trends. Saturation specific humidity q(s) has a generally negative effect on global precipitation occurrence and with the tropical wet pentad precipitation amount, but has a positive relationship with the pentad precipitation amount at mid- and high latitudes. The North Atlantic Oscillation, a proxy for the meridional temperature gradient, is also found to have a statistically significant positive effect on precipitation over much of the Atlantic region. Residual time trends in wet pentad precipitation are extremely sensitive to the choice of the wet pentad threshold because of increasing trends in low-amplitude precipitation pentads; too low a choice of threshold can lead to a spurious decreasing trend in wet pentad precipitation amounts. However, for not too small thresholds, it is found that the meridional temperature gradient is an important factor for explaining part of the long-term trend in Atlantic precipitation.
Resumo:
Light Detection And Ranging (LIDAR) is an important modality in terrain and land surveying for many environmental, engineering and civil applications. This paper presents the framework for a recently developed unsupervised classification algorithm called Skewness Balancing for object and ground point separation in airborne LIDAR data. The main advantages of the algorithm are threshold-freedom and independence from LIDAR data format and resolution, while preserving object and terrain details. The framework for Skewness Balancing has been built in this contribution with a prediction model in which unknown LIDAR tiles can be categorised as “hilly” or “moderate” terrains. Accuracy assessment of the model is carried out using cross-validation with an overall accuracy of 95%. An extension to the algorithm is developed to address the overclassification issue for hilly terrain. For moderate terrain, the results show that from the classified tiles detached objects (buildings and vegetation) and attached objects (bridges and motorway junctions) are separated from bare earth (ground, roads and yards) which makes Skewness Balancing ideal to be integrated into geographic information system (GIS) software packages.
Resumo:
The major component of skeletal muscle is the myofibre. Genetic intervention inducing over-enlargement of myofibres beyond a certain threshold through acellular growth causes a reduction in the specific tension generating capacity of the muscle. However the physiological parameters of a genetic model that harbours reduced skeletal muscle mass have yet to be analysed. Genetic deletion of Meox2 in mice leads to reduced limb muscle size and causes some patterning defects. The loss of Meox2 is not embryonically lethal and a small percentage of animals survive to adulthood making it an excellent model with which to investigate how skeletal muscle responds to reductions in mass. In this study we have performed a detailed analysis of both late foetal and adult muscle development in the absence of Meox2. In the adult, we show that the loss of Meox2 results in smaller limb muscles that harbour reduced numbers of myofibres. However, these fibres are enlarged. These myofibres display a molecular and metabolic fibre type switch towards a more oxidative phenotype that is induced through abnormalities in foetal fibre formation. In spite of these changes, the muscle from Meox2 mutant mice is able to generate increased levels of specific tension compared to that of the wild type.
Resumo:
We compared output from 3 dynamic process-based models (DMs: ECOSSE, MILLENNIA and the Durham Carbon Model) and 9 bioclimatic envelope models (BCEMs; including BBOG ensemble and PEATSTASH) ranging from simple threshold to semi-process-based models. Model simulations were run at 4 British peatland sites using historical climate data and climate projections under a medium (A1B) emissions scenario from the 11-RCM (regional climate model) ensemble underpinning UKCP09. The models showed that blanket peatlands are vulnerable to projected climate change; however, predictions varied between models as well as between sites. All BCEMs predicted a shift from presence to absence of a climate associated with blanket peat, where the sites with the lowest total annual precipitation were closest to the presence/absence threshold. DMs showed a more variable response. ECOSSE predicted a decline in net C sink and shift to net C source by the end of this century. The Durham Carbon Model predicted a smaller decline in the net C sink strength, but no shift to net C source. MILLENNIA predicted a slight overall increase in the net C sink. In contrast to the BCEM projections, the DMs predicted that the sites with coolest temperatures and greatest total annual precipitation showed the largest change in carbon sinks. In this model inter-comparison, the greatest variation in model output in response to climate change projections was not between the BCEMs and DMs but between the DMs themselves, because of different approaches to modelling soil organic matter pools and decomposition amongst other processes. The difference in the sign of the response has major implications for future climate feedbacks, climate policy and peatland management. Enhanced data collection, in particular monitoring peatland response to current change, would significantly improve model development and projections of future change.
Resumo:
The intensity and distribution of daily precipitation is predicted to change under scenarios of increased greenhouse gases (GHGs). In this paper, we analyse the ability of HadCM2, a general circulation model (GCM), and a high-resolution regional climate model (RCM), both developed at the Met Office's Hadley Centre, to simulate extreme daily precipitation by reference to observations. A detailed analysis of daily precipitation is made at two UK grid boxes, where probabilities of reaching daily thresholds in the GCM and RCM are compared with observations. We find that the RCM generally overpredicts probabilities of extreme daily precipitation but that, when the GCM and RCM simulated values are scaled to have the same mean as the observations, the RCM captures the upper-tail distribution more realistically. To compare regional changes in daily precipitation in the GHG-forced period 2080-2100 in the GCM and the RCM, we develop two methods. The first considers the fractional changes in probability of local daily precipitation reaching or exceeding a fixed 15 mm threshold in the anomaly climate compared with the control. The second method uses the upper one-percentile of the control at each point as the threshold. Agreement between the models is better in both seasons with the latter method, which we suggest may be more useful when considering larger scale spatial changes. On average, the probability of precipitation exceeding the 1% threshold increases by a factor of 2.5 (GCM and RCM) in winter and by I .7 (GCM) or 1.3 (RCM) in summer.
Resumo:
Coupled chemistry‐climate model simulations covering the recent past and continuing throughout the 21st century have been completed with a range of different models. Common forcings are used for the halogen amounts and greenhouse gas concentrations, as expected under the Montreal Protocol (with amendments) and Intergovernmental Panel on Climate Change A1b Scenario. The simulations of the Antarctic ozone hole are compared using commonly used diagnostics: the minimum ozone, the maximum area of ozone below 220 DU, and the ozone mass deficit below 220 DU. Despite the fact that the processes responsible for ozone depletion are reasonably well understood, a wide range of results is obtained. Comparisons with observations indicate that one of the reasons for the model underprediction in ozone hole area is the tendency for models to underpredict, by up to 35%, the area of low temperatures responsible for polar stratospheric cloud formation. Models also typically have species gradients that are too weak at the edge of the polar vortex, suggesting that there is too much mixing of air across the vortex edge. Other models show a high bias in total column ozone which restricts the size of the ozone hole (defined by a 220 DU threshold). The results of those models which agree best with observations are examined in more detail. For several models the ozone hole does not disappear this century but a small ozone hole of up to three million square kilometers continues to occur in most springs even after 2070.
Resumo:
Developments in high-throughput genotyping provide an opportunity to explore the application of marker technology in distinctness, uniformity and stability (DUS) testing of new varieties. We have used a large set of molecular markers to assess the feasibility of a UPOV Model 2 approach: “Calibration of threshold levels for molecular characteristics against the minimum distance in traditional characteristics”. We have examined 431 winter and spring barley varieties, with data from UK DUS trials comprising 28 characteristics, together with genotype data from 3072 SNP markers. Inter varietal distances were calculated and we found higher correlations between molecular and morphological distances than have been previously reported. When varieties were grouped by kinship, phenotypic and genotypic distances of these groups correlated well. We estimated the minimum marker numbers required and showed there was a ceiling after which the correlations do not improve. To investigate the possibility of breaking through this ceiling, we attempted genomic prediction of phenotypes from genotypes and higher correlations were achieved. We tested distinctness decisions made using either morphological or genotypic distances and found poor correspondence between each method.
Resumo:
Area-wide development viability appraisals are undertaken to determine the economic feasibility of policy targets in relation to planning obligations. Essentially, development viability appraisals consist of a series of residual valuations of hypothetical development sites across a local authority area at a particular point in time. The valuations incorporate the estimated financial implications of the proposed level of planning obligations. To determine viability the output land values are benchmarked against threshold land value and therefore the basis on which this threshold is established and the level at which it is set is critical to development viability appraisal at the policy-setting (area-wide) level. Essentially it is an estimate of the value at which a landowner would be prepared to sell. If the estimated site values are higher than the threshold land value the policy target is considered viable. This paper investigates the effectiveness of existing methods of determining threshold land value. They will be tested against the relationship between development value and costs. Modelling reveals that threshold land value that is not related to shifts in development value renders marginal sites unviable and fails to collect proportionate planning obligations from high value/low cost sites. Testing the model against national average house prices and build costs reveals the high degree of volatility in residual land values over time and underlines the importance of making threshold land value relative to the main driver of this volatility, namely development value.
Resumo:
An updated empirical approach is proposed for specifying coexistence requirements for genetically modified (GM) maize (Zea mays L.) production to ensure compliance with the 0.9% labeling threshold for food and feed in the European Union. The model improves on a previously published (Gustafson et al., 2006) empirical model by adding recent data sources to supplement the original database and including the following additional cases: (i) more than one GM maize source field adjacent to the conventional or organic field, (ii) the possibility of so-called “stacked” varieties with more than one GM trait, and (iii) lower pollen shed in the non-GM receptor field. These additional factors lead to the possibility for somewhat wider combinations of isolation distance and border rows than required in the original version of the empirical model. For instance, in the very conservative case of a 1-ha square non-GM maize field surrounded on all four sides by homozygous GM maize with 12 m isolation (the effective isolation distance for a single GM field), non-GM border rows of 12 m are required to be 95% confident of gene flow less than 0.9% in the non-GM field (with adventitious presence of 0.3%). Stacked traits of higher GM mass fraction and receptor fields of lower pollen shed would require a greater number of border rows to comply with the 0.9% threshold, and an updated extension to the model is provided to quantify these effects.
Resumo:
Although financial theory rests heavily upon the assumption that asset returns are normally distributed, value indices of commercial real estate display significant departures from normality. In this paper, we apply and compare the properties of two recently proposed regime switching models for value indices of commercial real estate in the US and the UK, both of which relax the assumption that observations are drawn from a single distribution with constant mean and variance. Statistical tests of the models' specification indicate that the Markov switching model is better able to capture the non-stationary features of the data than the threshold autoregressive model, although both represent superior descriptions of the data than the models that allow for only one state. Our results have several implications for theoretical models and empirical research in finance.
Resumo:
A numerical model embodying the concepts of the Cowley-Lockwood (Cowley and Lockwood, 1992, 1997) paradigm has been used to produce a simple Cowley– Lockwood type expanding flow pattern and to calculate the resulting change in ion temperature. Cross-correlation, fixed threshold analysis and threshold relative to peak are used to determine the phase speed of the change in convection pattern, in response to a change in applied reconnection. Each of these methods fails to fully recover the expansion of the onset of the convection response that is inherent in the simulations. The results of this study indicate that any expansion of the convection pattern will be best observed in time-series data using a threshold which is a fixed fraction of the peak response. We show that these methods used to determine the expansion velocity can be used to discriminate between the two main models for the convection response to a change in reconnection.
Resumo:
Numerical simulations are presented of the ion distribution functions seen by middle-altitude spacecraft in the low-latitude boundary layer (LLBL) and cusp regions when reconnection is, or has recently been, taking place at the equatorial magnetopause. From the evolution of the distribution function with time elapsed since the field line was opened, both the observed energy/observation-time and pitch-angle/energy dispersions are well reproduced. Distribution functions showing a mixture of magnetosheath and magnetospheric ions, often thought to be a signature of the LLBL, are found on newly opened field lines as a natural consequence of the magnetopause effects on the ions and their flight times. In addition, it is shown that the extent of the source region of the magnetosheath ions that are detected by a satellite is a function of the sensitivity of the ion instrument . If the instrument one-count level is high (and/or solar-wind densities are low), the cusp ion precipitation detected comes from a localised region of the mid-latitude magnetopause (around the magnetic cusp), even though the reconnection takes place at the equatorial magnetopause. However, if the instrument sensitivity is high enough, then ions injected from a large segment of the dayside magnetosphere (in the relevant hemisphere) will be detected in the cusp. Ion precipitation classed as LLBL is shown to arise from the low-latitude magnetopause, irrespective of the instrument sensitivity. Adoption of threshold flux definitions has the same effect as instrument sensitivity in artificially restricting the apparent source region.
Resumo:
Genome-wide association studies (GWAS) have been widely used in genetic dissection of complex traits. However, common methods are all based on a fixed-SNP-effect mixed linear model (MLM) and single marker analysis, such as efficient mixed model analysis (EMMA). These methods require Bonferroni correction for multiple tests, which often is too conservative when the number of markers is extremely large. To address this concern, we proposed a random-SNP-effect MLM (RMLM) and a multi-locus RMLM (MRMLM) for GWAS. The RMLM simply treats the SNP-effect as random, but it allows a modified Bonferroni correction to be used to calculate the threshold p value for significance tests. The MRMLM is a multi-locus model including markers selected from the RMLM method with a less stringent selection criterion. Due to the multi-locus nature, no multiple test correction is needed. Simulation studies show that the MRMLM is more powerful in QTN detection and more accurate in QTN effect estimation than the RMLM, which in turn is more powerful and accurate than the EMMA. To demonstrate the new methods, we analyzed six flowering time related traits in Arabidopsis thaliana and detected more genes than previous reported using the EMMA. Therefore, the MRMLM provides an alternative for multi-locus GWAS.
Resumo:
A mathematical model for Banana Xanthomonas Wilt (BXW) spread by insect is presented. The model incorporates inflorescence infection and vertical transmission from the mother corm to attached suckers, but not tool-based transmission by humans. Expressions for the basic reproduction number R0 are obtained and it is verified that disease persists, at a unique endemic level, when R0 > 1. From sensitivity analysis, inflorescence infection rate and roguing rate were the parameters with most influence on disease persistence and equilibrium level. Vertical transmission parameters had less effect on persistence threshold values. Parameters were approximately estimated from field data. The model indicates that single stem removal is a feasible approach to eradication if spread is mainly via inflorescence infection. This requires continuous surveillance and debudding such that a 50% reduction in inflorescence infection and 2–3 weeks interval of surveillance would eventually lead to full recovery of banana plantations and hence improved production.
Resumo:
In this paper, we consider the problem of estimating the number of times an air quality standard is exceeded in a given period of time. A non-homogeneous Poisson model is proposed to analyse this issue. The rate at which the Poisson events occur is given by a rate function lambda(t), t >= 0. This rate function also depends on some parameters that need to be estimated. Two forms of lambda(t), t >= 0 are considered. One of them is of the Weibull form and the other is of the exponentiated-Weibull form. The parameters estimation is made using a Bayesian formulation based on the Gibbs sampling algorithm. The assignation of the prior distributions for the parameters is made in two stages. In the first stage, non-informative prior distributions are considered. Using the information provided by the first stage, more informative prior distributions are used in the second one. The theoretical development is applied to data provided by the monitoring network of Mexico City. The rate function that best fit the data varies according to the region of the city and/or threshold that is considered. In some cases the best fit is the Weibull form and in other cases the best option is the exponentiated-Weibull. Copyright (C) 2007 John Wiley & Sons, Ltd.