973 resultados para sparse matrix technique
Resumo:
Chaque année, le piratage mondial de la musique coûte plusieurs milliards de dollars en pertes économiques, pertes d’emplois et pertes de gains des travailleurs ainsi que la perte de millions de dollars en recettes fiscales. La plupart du piratage de la musique est dû à la croissance rapide et à la facilité des technologies actuelles pour la copie, le partage, la manipulation et la distribution de données musicales [Domingo, 2015], [Siwek, 2007]. Le tatouage des signaux sonores a été proposé pour protéger les droit des auteurs et pour permettre la localisation des instants où le signal sonore a été falsifié. Dans cette thèse, nous proposons d’utiliser la représentation parcimonieuse bio-inspirée par graphe de décharges (spikegramme), pour concevoir une nouvelle méthode permettant la localisation de la falsification dans les signaux sonores. Aussi, une nouvelle méthode de protection du droit d’auteur. Finalement, une nouvelle attaque perceptuelle, en utilisant le spikegramme, pour attaquer des systèmes de tatouage sonore. Nous proposons tout d’abord une technique de localisation des falsifications (‘tampering’) des signaux sonores. Pour cela nous combinons une méthode à spectre étendu modifié (‘modified spread spectrum’, MSS) avec une représentation parcimonieuse. Nous utilisons une technique de poursuite perceptive adaptée (perceptual marching pursuit, PMP [Hossein Najaf-Zadeh, 2008]) pour générer une représentation parcimonieuse (spikegramme) du signal sonore d’entrée qui est invariante au décalage temporel [E. C. Smith, 2006] et qui prend en compte les phénomènes de masquage tels qu’ils sont observés en audition. Un code d’authentification est inséré à l’intérieur des coefficients de la représentation en spikegramme. Puis ceux-ci sont combinés aux seuils de masquage. Le signal tatoué est resynthétisé à partir des coefficients modifiés, et le signal ainsi obtenu est transmis au décodeur. Au décodeur, pour identifier un segment falsifié du signal sonore, les codes d’authentification de tous les segments intacts sont analysés. Si les codes ne peuvent être détectés correctement, on sait qu’alors le segment aura été falsifié. Nous proposons de tatouer selon le principe à spectre étendu (appelé MSS) afin d’obtenir une grande capacité en nombre de bits de tatouage introduits. Dans les situations où il y a désynchronisation entre le codeur et le décodeur, notre méthode permet quand même de détecter des pièces falsifiées. Par rapport à l’état de l’art, notre approche a le taux d’erreur le plus bas pour ce qui est de détecter les pièces falsifiées. Nous avons utilisé le test de l’opinion moyenne (‘MOS’) pour mesurer la qualité des systèmes tatoués. Nous évaluons la méthode de tatouage semi-fragile par le taux d’erreur (nombre de bits erronés divisé par tous les bits soumis) suite à plusieurs attaques. Les résultats confirment la supériorité de notre approche pour la localisation des pièces falsifiées dans les signaux sonores tout en préservant la qualité des signaux. Ensuite nous proposons une nouvelle technique pour la protection des signaux sonores. Cette technique est basée sur la représentation par spikegrammes des signaux sonores et utilise deux dictionnaires (TDA pour Two-Dictionary Approach). Le spikegramme est utilisé pour coder le signal hôte en utilisant un dictionnaire de filtres gammatones. Pour le tatouage, nous utilisons deux dictionnaires différents qui sont sélectionnés en fonction du bit d’entrée à tatouer et du contenu du signal. Notre approche trouve les gammatones appropriés (appelés noyaux de tatouage) sur la base de la valeur du bit à tatouer, et incorpore les bits de tatouage dans la phase des gammatones du tatouage. De plus, il est montré que la TDA est libre d’erreur dans le cas d’aucune situation d’attaque. Il est démontré que la décorrélation des noyaux de tatouage permet la conception d’une méthode de tatouage sonore très robuste. Les expériences ont montré la meilleure robustesse pour la méthode proposée lorsque le signal tatoué est corrompu par une compression MP3 à 32 kbits par seconde avec une charge utile de 56.5 bps par rapport à plusieurs techniques récentes. De plus nous avons étudié la robustesse du tatouage lorsque les nouveaux codec USAC (Unified Audion and Speech Coding) à 24kbps sont utilisés. La charge utile est alors comprise entre 5 et 15 bps. Finalement, nous utilisons les spikegrammes pour proposer trois nouvelles méthodes d’attaques. Nous les comparons aux méthodes récentes d’attaques telles que 32 kbps MP3 et 24 kbps USAC. Ces attaques comprennent l’attaque par PMP, l’attaque par bruit inaudible et l’attaque de remplacement parcimonieuse. Dans le cas de l’attaque par PMP, le signal de tatouage est représenté et resynthétisé avec un spikegramme. Dans le cas de l’attaque par bruit inaudible, celui-ci est généré et ajouté aux coefficients du spikegramme. Dans le cas de l’attaque de remplacement parcimonieuse, dans chaque segment du signal, les caractéristiques spectro-temporelles du signal (les décharges temporelles ;‘time spikes’) se trouvent en utilisant le spikegramme et les spikes temporelles et similaires sont remplacés par une autre. Pour comparer l’efficacité des attaques proposées, nous les comparons au décodeur du tatouage à spectre étendu. Il est démontré que l’attaque par remplacement parcimonieux réduit la corrélation normalisée du décodeur de spectre étendu avec un plus grand facteur par rapport à la situation où le décodeur de spectre étendu est attaqué par la transformation MP3 (32 kbps) et 24 kbps USAC.
Resumo:
Colorectal cancer (CRC) is the third most common cancer in the UK with 41,000 new cases diagnosed in 2011. Despite undergoing potentially curative resection, a significant amount of patients develop recurrence. Biomarkers that aid prognostication or identify patients who are suitable for adjuvant treatments are needed. The TNM staging system does a reasonably good job at offering prognostic information to the treating clinician, but it could be better and identifying methods of improving its accuracy are needed. Tumour progression is based on a complex relationship between tumour behaviour and the hosts’ inflammatory responses. Sustained tumour cell proliferation, evading growth suppressors, resisting apoptosis, replicative immortality, sustained angiogenesis, invasion & metastasis, avoiding immune destruction, deregulated cellular energetics, tumour promoting inflammation and genomic instability & mutation have been identified as hallmarks. These hallmarks are malignant behaviors are what makes the cell cancerous and the more extreme the behaviour the more aggressive the cancer the more likely the risk of a poor outcome. There are two primary genomic instability pathways: Microsatellite Instability (MSI) and Chromosomal Instability (CI) also referred to as Microsatellite Stability (MSS). Tumours arising by these pathways have a predilection for specific anatomical, histological and molecular biological features. It is possible that aberrant molecular expression of genes/proteins that promote malignant behaviors may also act as prognostic and predictive biomarkers, which may offer superior prognostic information to classical prognostic features. Cancer related inflammation has been described as a 7th hallmark of cancer. Despite the systemic inflammatory response (SIR) being associated with more aggressive malignant disease, infiltration by immune cells, particularly CD8+ lymphocytes, at the advancing edge of the tumour have been associated with improved outcome and tumour MSI. It remains unknown if the SIR is associated with tumour MSI and this requires further study. The mechanisms by which colorectal cancer cells locally invade through the bowel remain uncertain, but connective tissue degradation by matrix metalloproteinases (MMPs) such as MMP-9 have been implicated. MMP-9 has been found in the cancer cells, stromal cells and patient circulation. Although tumoural MMP-9 has been associated with poor survival, reports are conflicting and contain relatively small sample sizes. Furthermore, the influence of high serum MMP-9 on survival remains unknown. Src family kinases (SFKs) have been implicated in many adverse cancer cell behaviors. SFKs comprise 9 family members BLK, C-SRC, FGR, FYN, HCK, LCK, LYN, YES, YRK. C-SRC has been the most investigated of all SFKs, but the role of other SFKs in cellular behaviors and their prognostic value remains largely unknown. The development of Src inhibitors, such as Dasatinib, has identified SFKs as a potential therapeutic target for patients at higher risk of poor survival. Unfortunately, clinical trials so far have not been promising but this may reflect inadequate patient selection and SFKs may act as useful prognostic and predictive biomarkers. In chapter 3, the association between cancer related inflammation, tumour MSI, clinicopathological factors and survival was tested in two independent cohorts. A training cohort consisting of n=182 patients and a validation cohort of n=677 patients. MSI tumours were associated with a raised CRP (p=0.003). Hypoalbuminaemia was independently associated with poor overall survival in TNM stage II cancer (HR 3.04 (95% CI 1.44 – 6.43);p=0.004), poor recurrence free survival in TNM stage III cancer (HR 1.86 (95% 1.03 – 3.36);p=0.040) and poor overall survival in CI colorectal cancer (HR 1.49 (95% CI 1.06 – 2.10);p=0.022). Interestingly, MSI tumours were associated with poor overall survival in TNM stage III cancer (HR 2.20 (95% CI 1.10 – 4.37);p=0.025). In chapter 4, the role of MMP-9 in colorectal cancer progression and survival was examined. MMP-9 in the tissue was assessed using IHC and serum expression quantified using ELISA. Serum MMP-9 was associated with cancer cell expression (Spearman’s Correlation Coefficient (SCC) 0.393, p<0.001)) and stromal expression (SCC 0.319, p=0.002). Serum MMP-9 was associated with poor recurrence-free (HR 3.37 (95% CI 1.20 – 9.48);p=0.021) and overall survival (HR 3.16 (95% CI 1.22 – 8.15);p=0.018), but tumour MMP-9 was not survival or MSI status. In chapter 5, the role of SFK expression and activation in colorectal cancer progression and survival was studied. On PCR analysis, although LYN, C-SRC and YES were the most highly expressed, FGR and HCK had higher expression profiles as tumours progressed. Using IHC, raised cytoplasmic FAK (tyr 861) was independently associated with poor recurrence free survival in all cancers (HR 1.48 (95% CI 1.02 – 2.16);p=0.040) and CI cancers (HR 1.50 (95% CI 1.02 – 2.21);p=0.040). However, raised cytoplasmic HCK (HR 2.04 (95% CI 1.11 – 3.76);p=0.022) was independently associated with poor recurrence-free survival in TNM stage II cancers. T84 and HT29 cell lines were used to examine the cellular effects of Dasatinib. Cell viability was assessed using WST-1 assay and apoptosis assessed using an ELISA cell death detection assay. Dasatinib increased T84 tumour cell apoptosis in a dose dependent manner and resulted in reduced expression of nuclear (p=0.008) and cytoplasmic (p=0.016) FAK (tyr 861) expression and increased nuclear FGR expression (p=0.004). The results of this thesis confirm that colorectal cancer is a complex disease that represents several subtypes of cancer based on molecular biological behaviors. This thesis concentrated on features of the disease related to inflammation in terms of genetic and molecular characterisation. MSI cancers are closely associated with systemic inflammation but despite this observation, they retain their relatively improved survival. MMP-9 is a feature of tissue remodeling during inflammation and is also associated with degradation of connective tissue, advanced T-stage and poor outcome when measured in the serum. The lack of stromal quantification due to TMA use rather than full sections makes the value of tumoural MMP-9 immunoreactivity in the prognostication and its association with MSI unknown and requires further study. Finally, SFK activation was also associated with SIR, however, only cytoplasmic HCK was independently associated with poor survival in patients with TNM stage II disease, the group of patients where identifying a novel biomarker is most needed. There is still some way to go before these biomarkers are translated into clinical practice and future work needs to focus on obtaining a reliable and robust scientific technique with validation in an adequately powered independent cohort.
Resumo:
The formation of reactive oxygen species (ROS) within cells causes damage to biomolecules, including membrane lipids, DNA, proteins and sugars. An important type of oxidative damage is DNA base hydroxylation which leads to the formation of 8-oxo-7,8-dihydro-29-deoxyguanosine (8-oxodG) and 5-hydroxymethyluracil (5-HMUra). Measurement of these biomarkers in urine is challenging, due to the low levels of the analytes and the matrix complexity. In order to simultaneously quantify 8-oxodG and 5-HMUra in human urine, a new, reliable and powerful strategy was optimised and validated. It is based on a semi-automatic microextraction by packed sorbent (MEPS) technique, using a new digitally controlled syringe (eVolH), to enhance the extraction efficiency of the target metabolites, followed by a fast and sensitive ultrahigh pressure liquid chromatography (UHPLC). The optimal methodological conditions involve loading of 250 mL urine sample (1:10 dilution) through a C8 sorbent in a MEPS syringe placed in the semi-automatic eVolH syringe followed by elution using 90 mL of 20% methanol in 0.01% formic acid solution. The obtained extract is directly analysed in the UHPLC system using a binary mobile phase composed of aqueous 0.1% formic acid and methanol in the isocratic elution mode (3.5 min total analysis time). The method was validated in terms of selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), extraction yield, accuracy, precision and matrix effect. Satisfactory results were obtained in terms of linearity (r2 . 0.991) within the established concentration range. The LOD varied from 0.00005 to 0.04 mg mL21 and the LOQ from 0.00023 to 0.13 mg mL21. The extraction yields were between 80.1 and 82.2 %, while inter-day precision (n=3 days) varied between 4.9 and 7.7 % and intra-day precision between 1.0 and 8.3 %. This approach presents as main advantages the ability to easily collect and store urine samples for further processing and the high sensitivity, reproducibility, and robustness of eVolHMEPS combined with UHPLC analysis, thus retrieving a fast and reliable assessment of oxidatively damaged DNA.
Resumo:
The constantly increasing demand of clean water has become challenging to deal with over the past years, water being an ever more precious resource. In recent times, the existing wastewater treatments had to be integrated with new steps, due to the detection of so-called organic micropollutants (OMPs). These compounds have been shown to adversely affect the environment and possibly human health, even when found in very low concentrations. In order to remove OMPs from wastewater, one possible technique is a hybrid process combining filtration and adsorption. In this work, polyethersulfone multi-channel mixed-matrix membranes with embedded powdered activated carbon (PAC) were tested to investigate the membrane’s adsorption and desorption performance. Micropollutants retention was analyzed using the pharmaceutical compounds diclofenac (DCF), paracetamol (PARA) and carbamazepine (CBZ) in filtration mode, combining the PAC adsorption process with the membrane’s ultrafiltration. Desorption performance was studied through solvent regeneration, using seven different solvents: pure water, pure ethanol, mixture of ethanol and water in different concentration, sodium hydroxide and a mixture of ethanol and sodium hydroxide. Regeneration experiments were carried out in forward-flushing. At first regeneration efficiency was investigated using a single-solute solution (diclofenac in water). The mixture Ethanol/Water (50:50) was found to be the most efficient with long-term retention of 59% after one desorption cycle. It was, therefore, later tested on a membrane previously loaded with a multi-solute solution. Three desorption cycles were performed after which, retention (after 30 min) reached values of 87% for PARA and 72% for CBZ and 55% for DCF, which indicates decent regenerability. A morphological analysis on the membranes confirmed that, in any case, the regeneration cycles did not affect either the membranes’ structure, or the content and distribution of PAC in the matrix.
Resumo:
Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain-deficient dy(3K)/dy(3K) mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain-deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978).
Resumo:
Subjects with spinal cord injury (SCI) exhibit impaired left ventricular (LV) diastolic function, which has been reported to be attenuated by regular physical activity. This study investigated the relationship between circulating matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) and echocardiographic parameters in SCI subjects and the role of physical activity in this regard. Forty-two men with SCI [19 sedentary (S-SCI) and 23 physically-active (PA-SCI)] were evaluated by clinical, anthropometric, laboratory, and echocardiographic analysis. Plasmatic pro-MMP-2, MMP-2, MMP-8, pro-MMP-9, MMP-9, TIMP-1 and TIMP-2 levels were determined by enzyme-linked immunosorbent assay and zymography. PA-SCI subjects presented lower pro-MMP-2 and pro-MMP-2/TIMP-2 levels and improved markers of LV diastolic function (lower E/Em and higher Em and E/A values) than S-SCI ones. Bivariate analysis showed that pro-MMP-2 correlated inversely with Em and directly with E/Em, while MMP-9 correlated directly with LV mass index and LV end-diastolic diameter in the whole sample. Following multiple regression analysis, pro-MMP-2, but not physical activity, remained associated with Em, while MMP-9 was associated with LV mass index in the whole sample. These findings suggest differing roles for MMPs in LV structure and function regulation and an interaction among pro-MMP-2, diastolic function and physical activity in SCI subjects.
Resumo:
Corynebacterium species (spp.) are among the most frequently isolated pathogens associated with subclinical mastitis in dairy cows. However, simple, fast, and reliable methods for the identification of species of the genus Corynebacterium are not currently available. This study aimed to evaluate the usefulness of matrix-assisted laser desorption ionization/mass spectrometry (MALDI-TOF MS) for identifying Corynebacterium spp. isolated from the mammary glands of dairy cows. Corynebacterium spp. were isolated from milk samples via microbiological culture (n=180) and were analyzed by MALDI-TOF MS and 16S rRNA gene sequencing. Using MALDI-TOF MS methodology, 161 Corynebacterium spp. isolates (89.4%) were correctly identified at the species level, whereas 12 isolates (6.7%) were identified at the genus level. Most isolates that were identified at the species level with 16 S rRNA gene sequencing were identified as Corynebacterium bovis (n=156; 86.7%) were also identified as C. bovis with MALDI-TOF MS. Five Corynebacterium spp. isolates (2.8%) were not correctly identified at the species level with MALDI-TOF MS and 2 isolates (1.1%) were considered unidentified because despite having MALDI-TOF MS scores >2, only the genus level was correctly identified. Therefore, MALDI-TOF MS could serve as an alternative method for species-level diagnoses of bovine intramammary infections caused by Corynebacterium spp.
Resumo:
Retinal pigment epithelium cells, along with tight junction (TJ) proteins, constitute the outer blood retinal barrier (BRB). Contradictory findings suggest a role for the outer BRB in the pathogenesis of diabetic retinopathy (DR). The aim of this study was to investigate whether the mechanisms involved in these alterations are sensitive to nitrosative stress, and if cocoa or epicatechin (EC) protects from this damage under diabetic (DM) milieu conditions. Cells of a human RPE line (ARPE-19) were exposed to high-glucose (HG) conditions for 24 hours in the presence or absence of cocoa powder containing 0.5% or 60.5% polyphenol (low-polyphenol cocoa [LPC] and high-polyphenol cocoa [HPC], respectively). Exposure to HG decreased claudin-1 and occludin TJ expressions and increased extracellular matrix accumulation (ECM), whereas levels of TNF-α and inducible nitric oxide synthase (iNOS) were upregulated, accompanied by increased nitric oxide levels. This nitrosative stress resulted in S-nitrosylation of caveolin-1 (CAV-1), which in turn increased CAV-1 traffic and its interactions with claudin-1 and occludin. This cascade was inhibited by treatment with HPC or EC through δ-opioid receptor (DOR) binding and stimulation, thereby decreasing TNF-α-induced iNOS upregulation and CAV-1 endocytosis. The TJ functions were restored, leading to prevention of paracellular permeability, restoration of resistance of the ARPE-19 monolayer, and decreased ECM accumulation. The detrimental effects on TJs in ARPE-19 cells exposed to DM milieu occur through a CAV-1 S-nitrosylation-dependent endocytosis mechanism. High-polyphenol cocoa or EC exerts protective effects through DOR stimulation.
Resumo:
High phosphate (Pi) levels and extracellular matrix (ECM) accumulation are associated with chronic kidney disease progression. However, how high Pi levels contribute to ECM accumulation in mesangial cells is unknown. The present study investigated the role and mechanism of high Pi levels in ECM accumulation in immortalized human mesangial cells (iHMCs). iHMCs were exposed to normal (0.9 mM) or increasing Pi concentrations (2.5 and 5 mM) with or without diferent blockers or activators. NOX4, phosphorylated AMPK (p-AMPK), phosphorylated SMAD3 (p-SMAD3), fibronectin (F/N), collagen IV (C-IV) and alpha-smooth muscle actin (α-SMA) expression was assessed via western blot and immunofluorescence. Lucigenin-enhanced chemiluminescence, and dihydroethidium (DHE) assessed NADPH oxidase activity and superoxide (SO), respectively. In iHMCs, a Pi transporter blocker (PFA) abrogated high Pi-induced AMPK inactivation, increase in NADPH oxidase-induced reactive oxygen species (ROS) levels, NOX4, p-SMAD3, α-SMA and C-IV expression. AMPK activation by AICAR, NOX4 silencing or NADPH oxidase blocker prevented high Pi-induced DHE levels, p-SMAD3, F/N, C-IV and α-SMA expression. AMPK inactivation with NOX4-induced ROS formation and transforming growth factor ß-1 (TGFß-1) signaling activation mediates high Pi-induced ECM accumulation in iHMCs. Maneuvers increasing AMPK or reducing NOX4 activity may contribute to renal protection under hyperphosphatemia.
Resumo:
In this study, we show that administration of Bothrops moojeni venom in rats induces a general disturbance in the distribution and content of the tight junctional protein ZO-1, the cell-matrix receptor beta 1 integrin, the cytoskeletal proteins, vinculin and F-actin, and of the extracellular matrix component laminin in renal corpuscles and cortical nephron tubules. These findings suggest that cell-cell and cell-matrix adhesion proteins may be molecular targets in the B. moojeni-induced kidney injury.
Resumo:
To investigate endotoxin levels from primary endodontic infections before and after chemomechanical preparation (CMP) and to determine their antigenicity against 3T3 fibroblasts through gelatinolytic activity of matrix metalloproteinases (MMPs). Twenty-four root canals with primary endodontic infection and apical periodontitis were selected. Samples were collected using paper points before (S1) and after chemomechanical preparation (CMP) (S2). The limulus amebocyte lysate assay was used for endotoxin measurement. Fibroblasts were stimulated with root canal contents for 24 h. Supernatants of cell cultures stimulated with root canal contents were collected after 24 h to determine the levels of MMP-2 and MMP-9 gelatinolytic activity using the zymography technique. Friedman and Wilcoxon tests were used to compare the amount of endotoxin before (S1) and after CMP (S2) (P < 0.05). Data obtained from gelatinolytic activity were analysed using anova and Tukey's tests (P < 0.05). Endotoxin was recovered in 100% of the samples. There was a significant reduction in endotoxin levels after CMP (P < 0.05). A correlation was found between the levels of endotoxins and MMP-2 expression (P < 0.05). Root canal contents of initial samples (S1) induced significantly greater MMP-2 expression by fibroblasts when compared to S2 and the nonstimulated group (P < 0.05). No gelatinolytic activity of MMP-9 was observed in S1, S2 and control group. Root canal contents from primary endodontic infections had gelatinolytic activity for MMP-2. Moreover, CMP was effective in reducing endotoxin levels and their antigenicity against fibroblasts on gelatinolytic activity.
Resumo:
A proper cast is essential for a successful rehabilitation with implant prostheses, in order to produce better structures and induce less strain on the implants. The aim of this study was to evaluate the precision of four different mold filling techniques and verify an accurate methodology to evaluate these techniques. A total of 40 casts were obtained from a metallic matrix simulating three unit implant-retained prostheses. The molds were filled using four different techniques in four groups (n = 10): Group 1 - Single-portion filling technique; Group 2 - Two-step filling technique; Group 3 - Latex cylinder technique; Group 4 - Joining the implant analogs previously to the mold filling. A titanium framework was obtained and used as a reference to evaluate the marginal misfit and tension forces in each cast. Vertical misfit was measured with an optical microscope with an increase of 120 times following the single-screw test protocol. Strain was quantified using strain gauges. Data were analyzed using one-way ANOVA (Tukey's test) (α =0.05). The correlation between strain and vertical misfit was evaluated by Pearson test. The misfit values did not present statistical difference (P = 0.979), while the strain results showed statistical difference between Groups 3 and 4 (P = 0.027). The splinting technique was considered to be as efficient as the conventional technique. The strain gauge methodology was accurate for strain measurements and cast distortion evaluation. There was no correlation between strain and marginal misfit.
Resumo:
To evaluate the outcomes in patients treated for humerus distal third fractures with MIPO technique and visualization of the radial nerve by an accessory approach, in those without radial palsy before surgery. The patients were treated with MIPO technique. The visualization and isolation of the radial nerve was done by an approach between the brachialis and the brachiorradialis, with an oblique incision, in the lateral side of the arm. MEPS was used to evaluate the elbow function. Seven patients were evaluated with a mean age of 29.8 years old. The average follow up was 29.85 months. The radial neuropraxis after surgery occurred in three patients. The sensorial recovery occurred after 3.16 months on average and also of the motor function, after 5.33 months on average, in all patients. We achieved fracture consolidation in all patients (M=4.22 months). The averages for flexion-extension and prono-supination were 112.85° and 145°, respectively. The MEPS average score was 86.42. There was no case of infection. This approach allowed excluding a radial nerve interposition on site of the fracture and/or under the plate, showing a high level of consolidation of the fracture and a good evolution of the range of movement of the elbow. Level of Evidence IV, Case Series.
Resumo:
Matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS) has been widely used for the identification and classification of microorganisms based on their proteomic fingerprints. However, the use of MALDI-TOF MS in plant research has been very limited. In the present study, a first protocol is proposed for metabolic fingerprinting by MALDI-TOF MS using three different MALDI matrices with subsequent multivariate data analysis by in-house algorithms implemented in the R environment for the taxonomic classification of plants from different genera, families and orders. By merging the data acquired with different matrices, different ionization modes and using careful algorithms and parameter selection, we demonstrate that a close taxonomic classification can be achieved based on plant metabolic fingerprints, with 92% similarity to the taxonomic classifications found in literature. The present work therefore highlights the great potential of applying MALDI-TOF MS for the taxonomic classification of plants and, furthermore, provides a preliminary foundation for future research.
Resumo:
Context. The possibility of cephalic venous hypertension with the resultant facial edema and elevated cerebrospinal fluid pressure continues to challenge head and neck surgeons who perform bilateral radical neck dissections during simultaneous or staged procedures. Case Report. The staged procedure in patients who require bilateral neck dissections allows collateral venous drainage to develop, mainly through the internal and external vertebral plexuses, thereby minimizing the risks of deleterious consequences. Nevertheless, this procedure has disadvantages, such as a delay in definitive therapy, the need for a second hospitalization and anesthesia, and the risk of cutting lymphatic vessels and spreading viable cancer cells. In this paper, we discuss the rationale and feasibility of preserving the external jugular vein. Considering the limited number of similar reports in the literature, two cases in which this procedure was accomplished are described. The relevant anatomy and technique are reviewed and the patients' outcomes are discussed. Conclusion. Preservation of the EJV during bilateral neck dissections is technically feasible, fast, and safe, with clinically and radiologically demonstrated patency.