918 resultados para pulmonary artery
Resumo:
Increased pulmonary artery pressure is a well-known phenomenon of hypoxia and is seen in patients with chronic pulmonary diseases, and also in mountaineers on high altitude expedition. Different mediators are known to regulate pulmonary artery vessel tone. However, exact mechanisms are not fully understood and a multimodal process consisting of a whole panel of mediators is supposed to cause pulmonary artery vasoconstriction. We hypothesized that increased hypoxemia is associated with an increase in vasoconstrictive mediators and decrease of vasodilatators leading to a vasoconstrictive net effect. Furthermore, we suggested oxidative stress being partly involved in changement of these parameters. Oxygen saturation (Sao2) and clinical parameters were assessed in 34 volunteers before and during a Swiss research expedition to Mount Muztagh Ata (7549 m) in Western China. Blood samples were taken at four different sites up to an altitude of 6865 m. A mass spectrometry-based targeted metabolomic platform was used to detect multiple parameters, and revealed functional impairment of enzymes that require oxidation-sensitive cofactors. Specifically, the tetrahydrobiopterin (BH4)-dependent enzyme nitric oxide synthase (NOS) showed significantly lower activities (citrulline-to-arginine ratio decreased from baseline median 0.21 to 0.14 at 6265 m), indicating lower NO availability resulting in less vasodilatative activity. Correspondingly, an increase in systemic oxidative stress was found with a significant increase of the percentage of methionine sulfoxide from a median 6% under normoxic condition to a median level of 30% (p<0.001) in camp 1 at 5533 m. Furthermore, significant increase in vasoconstrictive mediators (e.g., tryptophan, serotonin, and peroxidation-sensitive lipids) were found. During ascent up to 6865 m, significant altitude-dependent changes in multiple vessel-tone modifying mediators with excess in vasoconstrictive metabolites could be demonstrated. These changes, as well as highly significant increase in systemic oxidative stress, may be predictive for increase in acute mountain sickness score and changes in Sao2.
Resumo:
Introduction Assist in unison to the patient’s inspiratory neural effort and feedback-controlled limitation of lung distension with neurally adjusted ventilatory assist (NAVA) may reduce the negative effects of mechanical ventilation on right ventricular function. Methods Heart–lung interaction was evaluated in 10 intubated patients with impaired cardiac function using esophageal balloons, pulmonary artery catheters and echocardiography. Adequate NAVA level identified by a titration procedure to breathing pattern (NAVAal), 50% NAVAal, and 200% NAVAal and adequate pressure support (PSVal, defined clinically), 50% PSVal, and 150% PSVal were implemented at constant positive end-expiratory pressure for 20 minutes each. Results NAVAal was 3.1 ± 1.1cmH2O/μV and PSVal was 17 ± 2 cmH20. For all NAVA levels negative esophageal pressure deflections were observed during inspiration whereas this pattern was reversed during PSVal and PSVhigh. As compared to expiration, inspiratory right ventricular outflow tract velocity time integral (surrogating stroke volume) was 103 ± 4%, 109 ± 5%, and 100 ± 4% for NAVAlow, NAVAal, and NAVAhigh and 101 ± 3%, 89 ± 6%, and 83 ± 9% for PSVlow, PSVal, and PSVhigh, respectively (p < 0.001 level-mode interaction, ANOVA). Right ventricular systolic isovolumetric pressure increased from 11.0 ± 4.6 mmHg at PSVlow to 14.0 ± 4.6 mmHg at PSVhigh but remained unchanged (11.5 ± 4.7 mmHg (NAVAlow) and 10.8 ± 4.2 mmHg (NAVAhigh), level-mode interaction p = 0.005). Both indicate progressive right ventricular outflow impedance with increasing pressure support ventilation (PSV), but no change with increasing NAVA level. Conclusions Right ventricular performance is less impaired during NAVA compared to PSV as used in this study. Proposed mechanisms are preservation of cyclic intrathoracic pressure changes characteristic of spontaneous breathing and limitation of right-ventricular outflow impedance during inspiration, regardless of the NAVA level.
Resumo:
The perioperative management of patients with mediastinal masses is a special clinical challenge in our field. Even though regional anaesthesia is normally the first choice, in some cases it is not feasible due to the method of operation. In these cases general anaesthesia is the second option but can lead to respiratory and haemodynamic decompensation due to tumor-associated compression syndrome (mediastinal mass syndrome). The appropriate treatment begins with the preoperative risk classification on the basis of clinical and radiological findings. In addition to anamnesis, chest radiograph, and CT, dynamical methods (e.g. pneumotachography and echocardiography) should be applied to verify possible intraoperative compression syndromes. The induction of general anaesthesia is to be realized in awake-fiberoptic intubation with introduction of the tube via nasal route while maintaining the spontaneous breathing of the patient. The anaesthesia continues with short effective agents applied inhalative or iv. If possible from the point of operation, agents of muscle relaxation are not to be applied. If the anaesthesia risk is classified as uncertain or unsafe, depending on the location of tumor compression (tracheobronchial tree, pulmonary artery, superior vena cava), alternative techniques of securing the respiratory tract (different tubes, rigid bronchoscope) and cardiopulmonary bypass with extracorporal oxygen supply are prepared. For patients with severe clinical symptoms and extensive mediastinal mass, the preoperative cannulation of femoral vessels is also recommended. In addition to fulfilling technical and personnel requirements, an interdisciplinary cooperation of participating fields is the most important prerequisite for the optimal treatment of patients.
Resumo:
BACKGROUND The assessment of hemodynamic status is a crucial task in the initial evaluation of trauma patients. However, blood pressure and heart rate are often misleading, as multiple variables may impact these conventional parameters. More reliable methods such as pulmonary artery thermodilution for cardiac output measuring would be necessary, but its applicability in the Emergency Department is questionable due to their invasive nature. Non-invasive cardiac output monitoring devices may be a feasible alternative. METHODS A systematic literature review was conducted. Only studies that explicitly investigated non-invasive hemodynamic monitoring devices in trauma patients were considered. RESULTS A total of 7 studies were identified as suitable and were included into this review. These studies evaluated in a total of 1,197 trauma patients the accuracy of non-invasive hemodynamic monitoring devices by comparing measurements to pulmonary artery thermodilution, which is the gold standard for cardiac output measuring. The correlation coefficients r between the two methods ranged from 0.79 to 0.92. Bias and precision analysis ranged from -0.02 +/- 0.78 l/min/m(2) to -0.14 +/- 0.73 l/min/m(2). Additionally, data on practicality, limitations and clinical impact of the devices were collected. CONCLUSION The accuracy of non-invasive cardiac output monitoring devices in trauma patients is broadly satisfactory. As the devices can be applied very early in the shock room or even preclinically, hemodynamic shock may be recognized much earlier and therapeutic interventions could be applied more rapidly and more adequately. The devices can be used in the daily routine of a busy ED, as they are non-invasive and easy to master.
Resumo:
Ein persistierender Ductus arteriosus (Ductus Botalli) ist seit Jahren als Ursache eines plötzlichen und unerwarteten Neugeborenentods und pulmonaler Hämorrhagien identifiziert. Insbesondere Frühgeborene weisen ein erhöhtes Risiko zur Entwicklung eines hämodynamisch signifikanten persistierenden Ductus arteriosus auf. Vorgestellt wird der plötzliche und unerwartete Todesfall eines 4 Tage alt gewordenen Säuglings, der 2 Wochen vor dem errechneten Termin geboren worden war. Bei der Obduktion zeigte sich ein sehr muskelkräftiger arterieller Gefäßkurzschluss zwischen der A. pulmonalis und dem Aortenbogen mit einem Durchmesser knapp unter dem der A. pulmonalis. Als Folge der pulmonalen Hyperperfusion fanden sich eine massive akute Blutstauung und kongestives Herzversagen infolge des „shunting“ von der systemischen in die pulmonale Zirkulation.
Resumo:
AIMS Children conceived by assisted reproductive technology (ART) display vascular dysfunction. Its underlying mechanism, potential reversibility and long-term consequences for cardiovascular risk are unknown. In mice, ART induces arterial hypertension and shortens the life span. These problems are related to decreased vascular endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) synthesis. The aim of this study was to determine whether ART-induced vascular dysfunction in humans is related to a similar mechanism and potentially reversible. To this end we tested whether antioxidants improve endothelial function by scavenging free radicals and increasing NO bioavailability. METHODS AND RESULTS In this prospective double-blind placebo controlled study in 21 ART and 21 control children we assessed the effects of a four-week oral supplementation with antioxidant vitamins C (1 g) and E (400 IU) or placebo (allocation ratio 2:1) on flow-mediated vasodilation (FMD) of the brachial artery and pulmonary artery pressure (echocardiography) during high-altitude exposure (3454 m), a manoeuver known to facilitate the detection of pulmonary vascular dysfunction and to decrease NO bioavailability by stimulating oxidative stress. Antioxidant supplementation significantly increased plasma NO measured by ozone-based chemiluminescence (from 21.7 ± 7.9 to 26.9 ± 7.6 µM, p = 0.04) and FMD (from 7.0 ± 2.1 to 8.7 ± 2.0%, p = 0.004) and attenuated altitude-induced pulmonary hypertension (from 33 ± 8 to 28 ± 6 mm Hg, p = 0.028) in ART children, whereas it had no detectable effect in control children. CONCLUSIONS Antioxidant administration to ART children improved NO bioavailability and vascular responsiveness in the systemic and pulmonary circulation. Collectively, these findings indicate that in young individuals ART-induced vascular dysfunction is subject to redox regulation and reversible.
Resumo:
Assisted reproductive technologies (ART) predispose the offspring to vascular dysfunction, arterial hypertension, and hypoxic pulmonary hypertension. Recently, cardiac remodeling and dysfunction during fetal and early postnatal life have been reported in offspring of ART, but it is not known whether these cardiac alterations persist later in life and whether confounding factors contribute to this problem. We, therefore, assessed cardiac function and pulmonary artery pressure by echocardiography in 54 healthy children conceived by ART (mean age 11.5 ± 2.4 yr) and 54 age-matched (12.2 ± 2.3 yr) and sex-matched control children. Because ART is often associated with low birth weight and prematurity, two potential confounders associated with cardiac dysfunction, only singletons born with normal birth weight at term were studied. Moreover, because cardiac remodeling in infants conceived by ART was observed in utero, a situation associated with increased right heart load, we also assessed cardiac function during high-altitude exposure, a condition associated with hypoxic pulmonary hypertension-induced right ventricular overload. We found that, while at low altitude cardiac morphometry and function was not different between children conceived by ART and control children, under the stressful conditions of high-altitude-induced pressure overload and hypoxia, larger right ventricular end-diastolic area and diastolic dysfunction (evidenced by lower E-wave tissue Doppler velocity and A-wave tissue Doppler velocity of the lateral tricuspid annulus) were detectable in children and adolescents conceived by ART. In conclusion, right ventricular dysfunction persists in children and adolescents conceived by ART. These cardiac alterations appear to be related to ART per se rather than to low birth weight or prematurity.
Resumo:
Background Chronic mountain sickness (CMS) is often associated with vascular dysfunction, but the underlying mechanism is unknown. Sleep disordered breathing (SDB) frequently occurs at high altitude. At low altitude SDB causes vascular dysfunction. Moreover, in SDB, transient elevations of right-sided cardiac pressure may cause right-to-left shunting in the presence of a patent foramen ovale (PFO) and, in turn, further aggravate hypoxemia and pulmonary hypertension. We speculated that compared to healthy high-altitude dwellers, in patients with CMS, SDB and nocturnal hypoxemia are more pronounced and related to vascular dysfunction. Methods We performed overnight sleep recordings, and measured systemic and pulmonary-artery pressure in 23 patients with CMS (mean±SD age 52.8±9.8 y) and 12 healthy controls (47.8±7.8 y) at 3600 m. In a subgroup of 15 subjects with SDB, we searched for PFO with transesophagal echocardiography. Results The major new findings were that in CMS patients, a) SDB and nocturnal hypoxemia was more severe (P<0.01) than in controls (apnea/hypopnea index, AHI, 38.9±25.5 vs. 14.3±7.8[nb/h]; SaO2, 80.2±3.6 vs. 86.8±1.7[%], CMS vs. controls), and b) AHI was directly correlated with systemic blood pressure (r=0.5216, P=0.001) and pulmonary-artery pressure (r=0.4497, P=0.024). PFO was associated with more severe SDB (AHI 48.8±24.7 vs. 14.8±7.3[nb/h], P=0.013, PFO vs. no PFO) and hypoxemia. Conclusion SDB and nocturnal hypoxemia are more severe in CMS patients than in controls and are associated with systemic and pulmonary vascular dysfunction. The presence of a PFO appeared to further aggravate SDB. Closure of PFO may improve SDB, hypoxemia and vascular dysfunction in CMS patients. Clinical Trials Gov Registration NCT01182792.
Resumo:
Blood vessel elasticity is important to physiology and clinical problems involving surgery, angioplasty, tissue remodeling, and tissue engineering. Nonlinearity in blood vessel elasticity in vivo is important to the formation of solitons in arterial pulse waves. It is well known that the stress–strain relationship of the blood vessel is nonlinear in general, but a controversy exists on how nonlinear it is in the physiological range. Another controversy is whether the vessel wall is biaxially isotropic. New data on canine aorta were obtained from a biaxial testing machine over a large range of finite strains referred to the zero-stress state. A new pseudo strain energy function is used to examine these questions critically. The stress–strain relationship derived from this function represents the sum of a linear stress–strain relationship and a definitely nonlinear relationship. This relationship fits the experimental data very well. With this strain energy function, we can define a parameter called the degree of nonlinearity, which represents the fraction of the nonlinear strain energy in the total strain energy per unit volume. We found that for the canine aorta, the degree of nonlinearity varies from 5% to 30%, depending on the magnitude of the strains in the physiological range. In the case of canine pulmonary artery in the arch region, Debes and Fung [Debes, J. C. & Fung, Y. C.(1995) Am. J. Physiol. 269, H433–H442] have shown that the linear regime of the stress–strain relationship extends from the zero-stress state to the homeostatic state and beyond. Both vessels, however, are anisotropic in both the linear and nonlinear regimes.
Resumo:
Albumin-binding proteins identified in vascular endothelial cells have been postulated to contribute to the transport of albumin via a process involving transcytosis. In the present study, we have purified and characterized a 57- to 60-kDa (gp60) putative albumin-binding protein from bovine pulmonary microvessel endothelial cells. The endothelial cell membranes were isolated from cultured cells by differential centrifugation and solubilized with sodium cholate and urea. The solubilized extract was concentrated after dialysis by ethanol precipitation and reextracted with Triton X-100, and the resulting extract was subjected to DEAE-cellulose column chromatography. Proteins eluted from this column were further separated using preparative sodium dodecyl sulfate/polyacrylamide gel electrophoresis and used for immunizing rabbits. Fluorescence-activated cell sorter analysis using the anti-gp60 antibodies demonstrated the expression of gp60 on the endothelial cell surface. Affinity-purified anti-gp60 antibodies inhibited approximately 90% of the specific binding of 125I-labeled albumin to bovine pulmonary microvessel endothelial cell surface. The anti-gp60 antibodies reacted with gp60 from bovine pulmonary artery, bovine pulmonary microvessel, human umbilical vein, and rat lung endothelial cell membranes. Bovine anti-gp60 antibodies also reacted with bovine secreted protein, acidic and rich in cysteine (SPARC). However, bovine SPARC NH2-terminal sequence (1-56 residues) antibodies did not react with gp60, indicating that the endothelial cell-surface-associated albumin-binding protein gp60 was different from the secreted albumin-binding protein SPARC. We conclude that the endothelial cell-surface-associated gp60 mediates the specific binding of native albumin to endothelial cells and thus may regulate the uptake of albumin and its transcytosis.
Resumo:
A doença valvar crônica de mitral (DVCM) é a principal cardiopatia adquirida dos cães e uma das suas complicações é a hipertensão arterial pulmonar (HAP), o que pode induzir a disfunção do ventriculo direito (VD). Assim, constituíram-se em objetivos do presente estudo identificar e descrever alterações de tamanho do VD, padrão de fluxo na artéria pulmonar (AP) e função sistólica ventricular direita nas diferentes fases da DVCM, além de correlacionar estas variáveis com índices de tamanho, volume, funções sistólica e diastólica do lado esquerdo do coração, bem como com a velocidade da insuficiência tricúspide (IT) e gradiente de pressão entre o ventrículo e átrio direitos nos cães que apresentavam regurgitação da valva tricúspide. Para tanto, foram incluídos 96 cães de diversas raças no estudo, que foram separados em quatro grupos de acordo com o estágio da DVCM: grupos ou estágios A, B1, B2 e C. Os cães com DVCM sintomáticos ou em estágio C apresentaram alterações no fluxo da artéria pulmonar (AP), bem evidenciadas pela redução das suas velocidades máxima e média, além da redução dos tempos de aceleração (TAC) e ejeção (TEJ) do fluxo sistólico da AP e correlação negativa com as variáveis de tamanho e funções sistólica e diastólica do coração esquerdo. O tamanho do VD foi estatisticamente maior nos animais do estágio C em comparação aos do estágio B1 e associou-se, negativamente, com os índices de função sistólica ventricular esquerda (VE). Os índices de função sistólica do VD como índice de excursão sistólica do plano anular tricúspide (iTAPSE) e variação fracional de área (FAC) foram maiores nos estágios mais avançados da DVCM e, juntamente com a velocidade de movimentação miocárdica sistólica do anel valvar tricúspide (onda Sm), correlacionou-se com índices de funções sistólica e diastólica do VE, seguindo o mesmo padrão de aumento de movimentação e estado hipercinético das variáveis do lado esquerdo do coração na evolução da DVCM. O padrão de fluxo sistólico da AP, bem caracterizado pelo TAC e TEJ, e o índice de área doVD foram os índices que mais alteraram com a evolução da hipertensão pulmonar na DVCM, enquanto que os índices de função do VD não apresentaram alterações significativas neste modelo de hipertensão arterial pulmonar em cão
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
OBJECTIVE High altitude-related hypoxia induces pulmonary vasoconstriction. In Fontan patients without a contractile subpulmonary ventricle, an increase in pulmonary artery pressure is expected to decrease circulatory output and reduce exercise capacity. This study investigates the direct effects of short-term high altitude exposure on pulmonary blood flow (PBF) and exercise capacity in Fontan patients. METHODS 16 adult Fontan patients (mean age 28±7 years, 56% female) and 14 matched controls underwent cardiopulmonary exercise testing with measurement of PBF with a gas rebreathing system at 540 m (low altitude) and at 3454 m (high altitude) within 12 weeks. RESULTS PBF at rest and at exercise was higher in controls than in Fontan patients, both at low and high altitude. PBF increased twofold in Fontan patients and 2.8-fold in the control group during submaximal exercise, with no significant difference between low and high altitude (p=0.290). A reduction in peak oxygen uptake at high compared with low altitude was observed in Fontan patients (22.8±5.1 and 20.5±3.8 mL/min/kg, p<0.001) and the control group (35.0±7.4 and 29.1±6.5 mL/min/kg, p<0.001). The reduction in exercise capacity was less pronounced in Fontan patients compared with controls (9±12% vs 17±8%, p=0.005). No major adverse clinical event was observed. CONCLUSIONS Short-term high altitude exposure has no negative impact on PBF and exercise capacity in Fontan patients when compared with controls, and was clinically well tolerated. TRIAL REGISTRATION NUMBER NCT02237274: Results.
Resumo:
Human urotensin-II (hU-II) is the most potent endogenous cardiostimulant identified to date. We therefore determined whether hU-II has a possible pathological role by investigating its levels in patients with congestive heart failure (CHF). Blood samples were obtained from the aortic root, femoral artery, femoral vein, and pulmonary artery from CHF patients undergoing cardiac catheterization and the aortic root from patients undergoing investigative angiography for chest pain who were not in heart failure. Immunoreactive hU-II (hU-II-ir) levels were determined with radioimmunoassay. hU-II-ir was elevated in the aortic root of CHF patients (230.9 +/- 68.7 pg/ml, n = 21; P < 0.001) vs. patients with nonfailing hearts (22.7 +/- 6.1 pg/ml, n = 18). This increase was attributed to cardiopulmonary production of hU-II-ir because levels were lower in the pulmonary artery (38.2 +/- 6.1 pg/ml, n = 21; P < 0.001) than in the aortic root. hU-II-ir was elevated in the aortic root of CHF patients with nonischemic cardiomyopathy (142.1 +/- 51.5 pg/ml, n = 10; P < 0.05) vs. patients with nonfailing hearts without coronary artery disease (27.3 +/- 12.4 pg/ml, n = 7) and CHF patients with ischemic cardiomyopathy (311.6 +/- 120.4 pg/ml, n = 11; P < 0.001) vs. patients with nonfailing hearts and coronary artery disease (19.8 +/- 6.6 pg/ml, n = 11). hU-II-ir was significantly higher in the aortic root than in the pulmonary artery and femoral vein, with a nonsignificant trend for higher levels in the aortic root than in the femoral artery. The findings indicated that hU-II-ir is elevated in the aortic root of CHF patients and that hU-II-ir is cleared at least in part from the microcirculation.
Resumo:
Objective: Cardiac impairment is frequently found in babies of diabetic mothers. It is still controversial whether this is due to poor glucose control. The aim of this study is to compare the cardiac function in fetuses of well- and poorly-controlled pre-gestational diabetic pregnancy in third trimester. Methods:Women with type 1 pre-gestational diabetes were enrolled at 30-32 weeks. Cardiac size and interventricular septal wall thickness were measured by M-mode at end-diastolic phase. The right and left ventricular ejection fractions were calculated. At the mitral and tricuspid valves inflow, the ratio between early ventricular filling and active atrial filling (E/A) at both atrioventricular valves were measured by Doppler echocardiography. Peak velocities of ascending aorta and pulmonary artery were assessed. The angle of isonation was kept at 6.5%) were compared with those with satisfactorily controlled diabetes (HbA1c less than or equal to 6.5%). Results: A total of 21 women with pre-gestational diabetes were recruited for this study. Eight women with well-controlled diabetes were compared with 9 women who had poorly-controlled diabetes. HbA1c in the poorly-controlled group was 7.3% and in the well-controlled group it was 5.4% (p < 0.001). There was no difference between the two groups in cardiac size, interventricular septal wall thickness, ejection fraction, aorta and pulmonary artery peak flow velocities. The right atrioventricular E/A ratio was significantly lower among the poorly-controlled diabetic pregnancies (0.71 vs. 0.54; p < 0.05). Conclusion: Fetuses of poorly-controlled diabetic mothers had a lower right atrioventricular E/A ratio. This may be due to metabolic acidosis, non-hypertrophic cardiac dysfunction or fetal polycythemia. Copyright (C) 2003 S. Karger AG, Basel.