965 resultados para polycyclic aromatic hydrocarbons and nitroderivatives
Resumo:
Data are presented on concentration and composition of aliphatic and polycyclic aromatic hydrocarbons (HC) in water, suspended matter (collected with a Juday net and by a separator), and in bottom sediments of the White Sea. It was found that during the last years the level of aliphatic HC concentrations in waters of the White Sea (aver. 18 µg/l) practically did not change and was comparable with average concentrations in shelf areas of the World Ocean. In water and bottom sediments distribution of HC is determined by discharge of river marginal filters. Here sedimentation of the bulk of anthropogenic HC occurs. That is why a grain-size controlling factor is not active in the zone of the river depocenter (in particular, of the North Dvina River). The same reasons most probably may explain differences in degree of geochemical relationships between contents of TOC and HC in suspended matter and bottom sediments. After passing through marginal filters natural HC are dominant in all migration forms.
Resumo:
Abundances and compositions of aliphatic hydrocarbons (AHC) and polyaromatic hydrocarbons (PAH) were investigated in water and bottom sediments of the southwestern Amur Bay, Sea of Japan. Water contained 0-129 ?g/l AHC (average 42.2 ?g/l) and 5-85 ng/l PAH (average 18 ng/l). Bottom sediments contained 168-2098 ?g/g AHC and 7.2-1100 ng/g dry mass PAH. It was shown that input of anthropogenic hydrocarbons is better recorded by molecular markers than by distribution of AHC and PAH concentrations. Discovery of elevated hydrocarbon concentrations in the bottom water layer suggests that bottom sediments induced secondary contamination of the water body.
Resumo:
Chlorocatechol 1,2-dioxygenase from the Gram-negative bacterium Pseudomonas putida (Pp 1,2-CCD) is considered to be an important biotechnological tool owing to its ability to process a broad spectrum of organic pollutants. In the current work, the crystallization, crystallographic characterization and phasing of the recombinant Pp 1,2-CCD enzyme are described. Reddish-brown crystals were obtained in the presence of polyethylene glycol and magnesium acetate by utilizing the vapour-diffusion technique in sitting drops. Crystal dehydration was the key step in obtaining data sets, which were collected on the D03B-MX2 beamline at the CNPEM/MCT - LNLS using a MAR CCD detector. Pp 1,2-CCD crystals belonged to space group P6(1)22 and the crystallographic structure of Pp 1,2-CCD has been solved by the MR-SAD technique using Fe atoms as scattering centres and the coordinates of 3-chlorocatechol 1,2-dioxygenase from Rhodococcus opacus (PDB entry
Resumo:
The environmental fate of polycyclic aromatic hydrocarbons (PAHs) in soils is motivated by their wide distribution, high persistence, and potentially deleterious effect on human health. Polycyclic aromatic hydrocarbons constitute the largest group of environmental contaminants released in the environment. Therefore, the potential biodegradation of these compounds is of vital importance. A biocarrier suitable for the colonization by micro-organisms for the purpose of purifying soil contaminated by polycyclic aromatic hydrocarbons was developed. The optimized composition of the biocarrier was polyvinyl alcohol (PVA) 10%, sodium alginate (SA) 0.5%, and powdered activated carbon (PAC) 5%. There was no observable cytotoxicity of biocarriers on immobilized cells and a viable cell population of 1.86 x 10(10) g(-1) was maintained for immobilized bacterium. Biocarriers made from chemical methods had a higher biodegradation but lower mechanical strengths. Immobilized bacterium Zoogloea sp. had an ideal capability of biodegradation for phenanthrene and pyrene over a relative wide concentration range. The study results showed that the biodegradation of phenanthrene and pyrene reached 87.0 and 75.4%, respectively, by using the optimal immobilized method of Zoogloea sp. cultivated in a sterilized soil. Immobilized Zoogloea sp. was found to be effective for biodegrading the soil contaminated with phenanthrene and pyrene. Even in natural (unsterilized) soil, the biodegradation of phenanthrene and pyrene using immobilized Zoogloea sp. reached 85.0 and 67.1%, respectively, after 168 h of cultivation, more than twice that achieved if the cells were not immobilized on the biocarrier. Therefore, the immobilization technology enhanced the competitive ability of introduced micro-organisms and represents an effective method for the biotreatment of soil contaminated with phenanthrene and pyrene.
Resumo:
Pollution by polycyclic aromatic hydrocarbons(PAHs) is widespread due to unsuitable disposal of industrial waste. They are mostly defined as priority pollutants by environmental protection authorities worldwide. Phenanthrene, a typical PAH, was selected as the target in this paper. The PAH-degrading mixed culture, named ZM, was collected from a petroleum contaminated river bed. This culture was injected into phenanthrene solutions at different concentrations to quantify the biodegradation process. Results show near-complete removal of phenanthrene in three days of biodegradation if the initial phenanthrene concentration is low. When the initial concentration is high, the removal rate is increased but 20%-40% of the phenanthrene remains at the end of the experiment. The biomass shows a peak on the third day due to the combined effects of microbial growth and decay. Another peak is evident for cases with a high initial concentration, possibly due to production of an intermediate metabolite. The pH generally decreased during biodegradation because of the production of organic acid. Two phenomenological models were designed to simulate the phenanthrene biodegradation and biomass growth. A relatively simple model that does not consider the intermediate metabolite and its inhibition of phenanthrene biodegradation cannot fit the observed data. A modified Monod model that considered an intermediate metabolite (organic acid) and its inhibiting reversal effect reasonably depicts the experimental results.
Resumo:
Air pollution is an important environmental health risk factor that can result in many different gestational and reproductive negative outcomes. In this study, we have investigated the effects of two different times of exposure (before conception and during pregnancy) to urban ambient particulate matter on reproductive and pregnancy outcomes in mice. Using exposure chambers receiving filtered (F) and non-filtered (NF) air, we observed that exposed females exhibited changes in the length of estrus cycle and extended estrus and, therefore, a reduction in the number of cycles during the studied period (F2.6 +/- 0.22 and NF 1.2 +/- 0.29, p = 0.03). The mean number of antral follicles declined by 36% (p = 0.04) in NF mice (75 +/- 35.2) compared to F mice (118.6 +/- 18.4). our results further indicate a significant increase in time necessary for mating and decreased fertility and pregnancy indices (p = 0.003) in NF couples. Mean post-implantation loss rates were increased by 70% (p <= 0.005) in the NF2 group (exposed before and during pregnancy to NF air) compared to the F1 group (exposed before and during pregnancy to F air) and were influenced by both pre-gestational (p < 0.004) and gestational (p < 0.01) period exposure. Fetal weight was significantly higher in the F1 group when compared with the other groups (p < 0.001), at a 20% higher weight in the F1 group (0.86 +/- 0.18 g) than in the NF2 group (0.68 +/- 0.10g). Furthermore, fetal weight was influenced by both pre-gestational and gestational period exposure, and a significant interaction between these two factors was found (p < 0.001). This study demonstrated that exposure to ambient levels of urban traffic-generated particulate matter negatively affects different functions and stages of the reproductive process. Our results also reinforce the idea that maternal exposure to air pollution is linked to negative pregnancy outcomes, even if the exposure occurs only before conception. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The impact of particle emissions by biomass burning is increasing throughout the world. We explored the toxicity of particulate matter produced by sugar cane burning and compared these effects with equivalent mass of traffic-derived particles. For this purpose, BALB/c mice received a single intranasal instillation of either distilled water (C) or total suspended particles (15 mu g) from an urban area (SP group) or biomass burning-derived particles (Bio group). Lung mechanical parameters (total, resistive and viscoelastic pressures, static elastance, and elastic component of viscoelasticity) and histology were analyzed 24h after instillation. Trace elements and polycyclic aromatic hydrocarbons (PAHs) metabolites of the two sources of particles were determined. All mechanical parameters increased similarly in both pollution groups compared with control, except airway resistive pressure, which increased only in Bio. Both exposed groups showed significantly higher fraction area of alveolar collapse, and influx of polymorphonuclear cells in lung parenchyma than C. The composition analysis of total suspended particles showed higher concentrations of PAHs and lower concentration of metals in traffic than in biomass burning-derived particles. In conclusion, we demonstrated that a single low dose of ambient particles, produced by traffic and sugar cane burning, induced significant alterations in pulmonary mechanics and lung histology in mice. Parenchymal changes were similar after exposure to both particle sources, whereas airway mechanics was more affected by biomass-derived particles. Our results indicate that biomass particles were at least as toxic as those produced by traffic. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Air pollution is associated with morbidity and mortality induced by respiratory diseases. However, the mechanisms therein involved are not yet fully clarified. Thus, we tested the hypothesis that a single acute exposure to low doses of fine particulate matter (PM2.5) may induce functional and histological lung changes and unchain inflammatory and oxidative stress processes. PM2.5 was collected from the urban area of Sao Paulo city during 24 h and underwent analysis for elements and polycyclic aromatic hydrocarbon contents. Forty-six male BALB/c mice received intranasal instillation of 30 mu L of saline (CTRL) or PM2.5 at 5 or 15 mu g in 30 mu L of saline (P5 and P15, respectively). Twenty-four hours later, lung mechanics were determined. Lungs were then prepared for histological and biochemical analysis. P15 group showed significantly increased lung impedance and alveolar collapse, as well as lung tissue inflammation, oxidative stress and damage. P5 presented values between CTRL and P15: higher mechanical impedance and inflammation than CTRL, but lower inflammation and oxidative stress than P15. In conclusion, acute exposure to low doses of fine PM induced lung inflammation, oxidative stress and worsened lung impedance and histology in a dose-dependent pattern in mice.
Resumo:
In Brazil, sugarcane fields are often burned to facilitate manual harvesting, and this burning causes environmental pollution from the large amounts of soot released into the atmosphere. This material contains numerous organic compounds such as PAHs. In this study, the concentrations of PAHs in two particulate-matter fractions (PM(2.5) and PM(10)) in the city of Araraquara (SE Brazil, with around 200,000 inhabitants and surrounded by sugarcane plantations) were determined during the sugarcane harvest (HV) and non-harvest (NHV) seasons in 2008 and 2009. The sampling strategy included four campaigns, with 60 samples in the NHV season and 220 samples in the HV season. The PM(2.5) and PM(10) fractions were collected using a dichotomous sampler (10 L min(-1), 24 h) with Teflon (TM) filters. The filter sets were extracted (ultrasonic bath with hexane/acetone (1:1 v/v)) and analyzed by HPLC/Fluorescence. The median concentration for total PAHs (PM(2.5) in 2009) was 0.99 ng m(-3) (NHV) and 3.3 ng m(-3) (HV). In the HV season, the total concentration of carcinogenic PAHs (benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene) was 5 times higher than in the NHV season. B(a)P median concentrations were 0.017 ng m(-3) and 0.12 ng m(-3) for the NHV and HV seasons, respectively. The potential cancer risk associated with exposure through inhalation of these compounds was estimated based on the benzo[a]pyrene toxic equivalence (BaP(eq)), where the overall toxicity of a PAR mixture is defined by the concentration of each compound multiplied by its relative toxic equivalence factor (TEF). BaP(eq) median (2008 and 2009 years) ranged between 0.65 and 1.0 ng m(-3) and 1.2-1.4 ng m(-3) for the NHV and HV seasons, respectively. Considering that the maximum permissible BaPeq in ambient air is 1 ng m(-3), related to the increased carcinogenic risk, our data suggest that the level of human exposure to PAHs in cities surrounded by sugarcane crops where the burning process is used is cause for concern. (C) 2010 Published by Elsevier Ltd.
Resumo:
The concentrations of SOCs in leaves of an evergreen Australian native tree (Melaleuca leucadendra) and grass collected in Brisbane, Australia were determined. The concentrations of PCDD/Fs and PAHs in the leaf tissue were comparable to those reported for urbanised areas in other industrialised countries. A distinct difference in the compound profiles between the leaves of the two species was observed, with higher concentrations of the lower molecular mass PAHs and PCDD/Fs and lower concentrations of the higher molecular mass PAHs and PCDD/Fs in the Melaleuca leaves relative to the grass leaves. The interspecies differences are explained on the basis of the larger size of the lipophilic compartment (for compounds with low K-OA) and the lower ratio of surface area to volume in the Melaleuca leaves. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Because of the mutagenic and/or carcinogenic properties, Polycyclic Aromatic Hydrocarbons (PAH), have a direct impact on human population. Consequently, there is a widespread interest in analysing and evaluating the exposure to PAH in different indoor environments, influenced by different emission sources. The information on indoor PAH is still limited, mainly in terms of PAH distribution in indoor particles of different sizes; thus, this study evaluated the influence of tobacco smoke on PM10 and PM2.5 characteristics, namely on their PAH compositions, with further aim to understand the negative impact of tobacco smoke on human health. Samples were collected at one site influenced by tobacco smoke and at one reference (non-smoking) site using low-volume samplers; the analyses of 17 PAH were performed by Microwave Assisted Extraction combined with Liquid Chromatography (MAE–LC). At the site influenced by tobacco smoke PM concentrations were higher 650% for PM10, and 720% for PM2.5. When influenced by smoking, 4 ring PAH (fluoranthene, pyrene, and chrysene) were the most abundant PAH, with concentrations 4600–21 000% and 5100–20 800% higher than at the reference site for PM10 and PM2.5, respectively, accounting for 49% of total PAH (SPAH). Higher molecular weight PAH (5–6 rings) reached concentrations 300–1300% and 140–1700% higher for PM10 and PM2.5, respectively, at the site influenced by tobacco smoke. Considering 9 carcinogenic PAH this increase was 780% and 760% in PM10 and PM2.5, respectively, indicating the strong potential risk for human health. As different composition profiles of PAH in indoor PM were obtained for reference and smoking sites, those 9 carcinogens represented at the reference site 84% and 86% of SPAH in PM10 and PM2.5, respectively, and at the smoking site 56% and 55% of SPAH in PM10 and PM2.5, respectively. All PAH (including the carcinogenic ones) were mainly present in fine particles, which corresponds to a strong risk for cardiopulmonary disease and lung cancer; thus, these conclusions are relevant for the development of strategies to protect public health.
Resumo:
Air pollution represents a serious risk not only to environment and human health, but also to historical heritage. In this study, air pollution of the Oporto Metropolitan Area and its main impacts were characterized. The results showed that levels of CO, PM10 and SO2 have been continuously decreasing in the respective metropolitan area while levels of NOx and NO2 have not changed significantly. Traffic emissions were the main source of the determined polycyclic aromatic hydrocarbons (PAHs; 16 PAHs considered by U.S. EPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) in air of the respective metropolitan area. The mean concentration of 18 PAHs in air was 69.9±39.7 ng m−3 with 3–4 rings PAHs accounting for 75% of the total ΣPAHs. The health risk analysis of PAHs in air showed that the estimated values of lifetime lung cancer risks considerably exceeded the health-based guideline level. Analytical results also confirm that historical monuments in urban areas act as passive repositories for air pollutants present in the surrounding atmosphere. FTIR and EDX analyses showed that gypsum was the most important constituent of black crusts of the characterized historical monument Monastery of Serra do Pilar classified as “UNESCO World Cultural Heritage”. In black crusts, 4–6 rings compounds accounted approximately for 85% of ΣPAHs. The diagnostic ratios confirmed that traffic emissions were the major source of PAHs in black crusts; PAH composition profiles were very similar for crusts and PM10 and PM2.5.
Resumo:
Purpose Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds commonly found as soil contaminants. Fungal degradation is considered as an environmentally friendly and cost-effective approach to remove PAHs from soil. Acenaphthylene (Ace) and Benzo[a]anthracene (BaA) are two PAHs that can coexist in soils; however, the influence of the presence of each other on their biodegradation has not been studied. The biodegradation of Ace and BaA, alone and in mixtures, by the white rot fungus Pleurotus ostreatus was studied in a sandy soil. Materials and methods Experimental microcosms containing soil spiked with different concentrations of Ace and BaAwere inoculated with P. ostreatus. Initial (t 0) and final (after 15 days of incubation) soil concentrations of Ace and BaA were determined after extraction of the PAHs. Results and discussion P. ostreatus was able to degrade 57.7% of the Ace in soil spiked at 30 mg kg−1 dry soil and 65.8% of Ace in soil spiked at 60 mg kg−1 dry soil. The degradation efficiency of BaA by P. ostreatus was 86.7 and 77.4% in soil spiked with Ace at 30 and 60 mg kg−1 dry soil, respectively. After 15 days of incubation, there were no significant differences in Ace concentration between soil spiked with Ace and soil spiked with Ace + BaA, irrespective of the initial soil concentration of both PAHs. There were also no differences in BaA concentration between soil spiked with BaA and soil spiked with BaA + Ace. Conclusions The results indicate that the fungal degradation of Ace and BaA was not influenced by the presence of each other’s PAH in sandy soil. Bioremediation of soils contaminated with Ace and BaA using P. ostreatus is a promising approach to eliminate these PAHs from the environment.
Resumo:
Considering vehicular transport as one of the most health‐relevant emission sources of urban air, and with aim to further understand its negative impact on human health, the objective of this work was to study its influence on levels of particulate‐bound PAHs and to evaluate associated health risks. The 16 PAHs considered by USEPA as priority pollutants, and dibenzo[a, l]pyrene associated with fine (PM2.5) and coarse (PM2.5–10) particles were determined. The samples were collected at one urban site, as well as at a reference place for comparison. The results showed that the air of the urban site was more seriously polluted than at the reference one, with total concentrations of 17 PAHs being 2240% and 640% higher for PM2.5 and PM2.5–10, respectively; vehicular traffic was the major emission source at the urban site. PAHs were predominantly associated with PM2.5 (83% to 94% of ΣPAHs at urban and reference site, respectively) with 5 rings PAHs being the most abundant groups of compounds at both sites. The risks associated with exposure to particulate PAHs were evaluated using the TEF approach. The estimated value of lifetime lung cancer risks exceeded the health‐based guideline levels, thus demonstrating that exposure to PM2.5‐bound PAHs at levels found at urban site might cause potential health risks. Furthermore, the results showed that evaluation of benzo[a] pyrene (regarded as a marker of the genotoxic and carcinogenic PAHs) alone would probably underestimate the carcinogenic potential of the studied PAH mixtures.