945 resultados para phase difference amplification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied effects of the relative phase between the probe and driving fields on the absorption and dispersion properties in an open three-level ladder system with spontaneously generated coherence but without incoherent pumping. It is shown that by the phase controlling, switching from absorption to lasing without inversion (LWI) and enhancing remarkablely LWI gain can be realized; large index of refraction with zero absorption and the electromagnetically induced transparency can be obtained. We also find that varying the atomic injection and exit rates has a considerable influence on the phase dependent-absorption property of the probe field, existent of the atomic injection and exit rates gives the necessary condition of the realization of LWI, getting LWI is impossible in the corresponding closed system without incoherent pumping. We studied effects of the relative phase between the probe and driving fields on the absorption and dispersion properties in an open three-level ladder system with spontaneously generated coherence but without incoherent pumping. It is shown that by the phase controlling, switching from absorption to lasing without inversion (LWI) and enhancing remarkablely LWI gain can be realized; large index of refraction with zero absorption and the electromagnetically induced transparency can be obtained. We also find that varying the atomic injection and exit rates has a considerable influence on the phase dependent-absorption property of the probe field, existent of the atomic injection and exit rates gives the necessary condition of the realization of LWI, getting LWI is impossible in the corresponding closed system without incoherent pumping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I

A study of the thermal reaction of water vapor and parts-per-million concentrations of nitrogen dioxide was carried out at ambient temperature and at atmospheric pressure. Nitric oxide and nitric acid vapor were the principal products. The initial rate of disappearance of nitrogen dioxide was first order with respect to water vapor and second order with respect to nitrogen dioxide. An initial third-order rate constant of 5.5 (± 0.29) x 104 liter2 mole-2 sec-1 was found at 25˚C. The rate of reaction decreased with increasing temperature. In the temperature range of 25˚C to 50˚C, an activation energy of -978 (± 20) calories was found.

The reaction did not go to completion. From measurements as the reaction approached equilibrium, the free energy of nitric acid vapor was calculated. This value was -18.58 (± 0.04) kilocalories at 25˚C.

The initial rate of reaction was unaffected by the presence of oxygen and was retarded by the presence of nitric oxide. There were no appreciable effects due to the surface of the reactor. Nitric oxide and nitrogen dioxide were monitored by gas chromatography during the reaction.

Part II

The air oxidation of nitric oxide, and the oxidation of nitric oxide in the presence of water vapor, were studied in a glass reactor at ambient temperatures and at atmospheric pressure. The concentration of nitric oxide was less than 100 parts-per-million. The concentration of nitrogen dioxide was monitored by gas chromatography during the reaction.

For the dry oxidation, the third-order rate constant was 1.46 (± 0.03) x 104 liter2 mole-2 sec-1 at 25˚C. The activation energy, obtained from measurements between 25˚C and 50˚C, was -1.197 (±0.02) kilocalories.

The presence of water vapor during the oxidation caused the formation of nitrous acid vapor when nitric oxide, nitrogen dioxide and water vapor combined. By measuring the difference between the concentrations of nitrogen dioxide during the wet and dry oxidations, the rate of formation of nitrous acid vapor was found. The third-order rate constant for the formation of nitrous acid vapor was equal to 1.5 (± 0.5) x 105 liter2 mole-2 sec-1 at 40˚C. The reaction rate did not change measurably when the temperature was increased to 50˚C. The formation of nitric acid vapor was prevented by keeping the concentration of nitrogen dioxide low.

Surface effects were appreciable for the wet tests. Below 35˚C, the rate of appearance of nitrogen dioxide increased with increasing surface. Above 40˚C, the effect of surface was small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I:

The perturbation technique developed by Rannie and Marble is used to study the effect of droplet solidification upon two-phase flow in a rocket nozzle. It is shown that under certain conditions an equilibrium flow exists, where the gas and particle phases have the same velocity and temperature at each section of the nozzle. The flow is divided into three regions: the first region, where the particles are all in the form of liquid droplets; a second region, over which the droplets solidify at constant freezing temperature; and a third region, where the particles are all solid. By a perturbation about the equilibrium flow, a solution is obtained for small particle slip velocities using the Stokes drag law and the corresponding approximation for heat transfer between the particle and gas phases. Singular perturbation procedure is required to handle the problem at points where solidification first starts and where it is complete. The effects of solidification are noticeable.

Part II:

When a liquid surface, in contact with only its pure vapor, is not in the thermodynamic equilibrium with it, a net condensation or evaporation of fluid occurs. This phenomenon is studied from a kinetic theory viewpoint by means of moment method developed by Lees. The evaporation-condensation rate is calculated for a spherical droplet and for a liquid sheet, when the temperatures and pressures are not too far removed from their equilibrium values. The solutions are valid for the whole range of Knudsen numbers from the free molecule to the continuum limit. In the continuum limit, the mass flux rate is proportional to the pressure difference alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been described that the near-field images of a high-density grating at the half self-imaging distance could be different for TE and TM polarization states. We propose that the phases of the diffraction orders play an important role in such polarization dependence. The view is verified through the coincidence of the numerical result of finite-difference time-domain method and the reconstructed results from the rigorous coupled-wave analysis. Field distributions of TE and TM polarizations are given numerically for a grating with period d = 2.3 lambda, which are verified through experiments with the scanning near-field optical microscopy technique. The concept of phase interpretation not only explains the polarization dependence at the half self-imaging distance of gratings with a physical view, but also, it could be widely used to describe the near-field diffraction of a variety of periodic diffractive optical elements whose feature size comparable to the wavelength. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As there exist some problems with the previous laser diode (LD) real-time microvibration measurement interferometers, such as low accuracy, correction before every use, etc., in this paper, we propose a new technique to realize the real-time microvibration measurement by using the LD sinusoidal phase-modulating interferometer, analyze the measurement theory and error, and simulate the measurement accuracy. This interferometer utilizes a circuit to process the interference signal in order to obtain the vibration frequency and amplitude of the detective signal, and a computer is not necessary in it. The influence of the varying light intensity and light path difference on the measurement result can be eliminated. This technique is real-time, convenient, fast, and can enhance the measurement accuracy too. Experiments show that the repeatable measurement accuracy is less than 3.37 nm, and this interferometer can be applied to real-time microvibration measurement of the MEMS. (C) 2007 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The measurement of cantilever parameters is an essential part of performing a calibrated measurement with an atomic force microscope (AFM). The thermal motion method is a widely used technique for calibrating the spring constant of an AFM cantilever, which can be applied to non-rectangular cantilevers. Given the trend towards high frequency scanning, calibration of non-rectangular cantilevers is of increasing importance. This paper presents two results relevant to cantilever calibration via the thermal motion method. We demonstrate the possibility of using the AFM's phase signal to acquire the thermal motion. This avoids the challenges associated with connecting the raw photodiode signal to a separate spectrum analyser. We also describe how numerical calculations may be used to calculate the parameters needed in a thermal motion calibration of a non-rectangular cantilever. Only accurate knowledge of the relative size of the in-plane dimensions of the cantilever is needed in this computation. We use this pair of results in the calibration of a variety of rectangular and non-rectangular cantilevers. We observe an average difference between the Sader and thermal motion values of cantilever stiffness of 10%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composites of magnetoresistive La 0.7Ca 0.3MnO 3 (LCMO) with insulating Mn 3O 4 are useful as a model system because no foreign cation is introduced in the LCMO phase by interdiffusion during the heat treatment. Here we report the magnetotransport properties as a function of sintering temperature T sinter for a fixed LCMO/Mn 3O 4 ratio. Decreasing T sinter from 1250 °C to 800 °C causes an increase in low field magnetoresistance (LFMR) that correlates with the decrease in crystallite size (CS) of the LCMO phase. When plotting LFMR at (77 K, 0.5 T) versus 1/CS, we find that the data for the LCMO/Mn 3O 4 composites sintered between 800 °C and 1250 °C follow the same trend line as data from the literature for pure LCMO samples with crystallite size >∼25 nm. This differs from the LFMR enhancement observed by many authors in the usual manganite composites, i.e., composites where the insulating phase contains cations other than La, Ca or Mn. This difference suggests that diffusion of foreign cations into the grain boundary region is a necessary ingredient for the enhanced LFMR. © 2012 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fifty years ago, FitzHugh introduced a phase portrait that became famous for a twofold reason: it captured in a physiological way the qualitative behavior of Hodgkin-Huxley model and it revealed the power of simple dynamical models to unfold complex firing patterns. To date, in spite of the enormous progresses in qualitative and quantitative neural modeling, this phase portrait has remained a core picture of neuronal excitability. Yet, a major difference between the neurophysiology of 1961 and of 2011 is the recognition of the prominent role of calcium channels in firing mechanisms. We show that including this extra current in Hodgkin-Huxley dynamics leads to a revision of FitzHugh-Nagumo phase portrait that affects in a fundamental way the reduced modeling of neural excitability. The revisited model considerably enlarges the modeling power of the original one. In particular, it captures essential electrophysiological signatures that otherwise require non-physiological alteration or considerable complexification of the classical model. As a basic illustration, the new model is shown to highlight a core dynamical mechanism by which calcium channels control the two distinct firing modes of thalamocortical neurons. © 2012 Drion et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dithiophene donor-acceptor copolymers that are bridged either with carbon (C-PCPDTBT) or silicon atoms (Si-PCPDTBT) belong to a promising family of materials for use in photoactive layers for organic photovoltaic cells (OPVs). In this work, we implement the non-destructive Spectroscopic Ellipsometry technique in the near infrared to the far ultraviolet spectral region in combination with advanced theoretical modeling to investigate the vertical distribution of the C-PCPDTBT and Si-PCPDTBT polymer and fullerene ([6,6]-phenyl C71-butyric acid methyl ester - PC70BM) phases in the blend, as well as the effect of the polymer-to-fullerene ratio on the distribution mechanism. It was found that the C-PCPDTBT:PC70BM blends have donor-enriched top regions and acceptor-enriched bottom regions, whereas the donor and acceptor phases are more homogeneously intermixed in the Si-PCPDTBT:PC70BM blends. We suggest that the chemical incompatibility of the two phases as expressed by the difference in their surface energy, may be a key element in promoting the segregation of the lower surface phase to the top region of the photoactive layer. We found that the increase of the photoactive layer thickness reduces the polymer enrichment at the cathode, producing a more homogeneous phase distribution of donor and acceptor in the bulk that leads to the increase of the OPV efficiency. © 2014 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ni silicides used as contacts in source/drain and gate of advanced CMOS devices were analyzed by atom probe tomography (APT) at atomic scale. These measurements were performed on 45 nm nMOS after standard self-aligned silicide (salicide) process using Ni(5 at.% Pt) alloy. After the first annealing (RTA1), δ-Ni2Si was the only phase formed on gate and source/drain while, after the second annealing (RTA2), two different Ni silicides have been formed: NiSi on the gate and δ-Ni2Si on the source and drain. This difference between source/drain and gate regions in nMOS devices has been related to the Si substrate nature (poly or mono-crystalline) and to the size of the contact. In fact, NiSi seems to have difficulties to nucleate in the narrow source/drain contact on mono-crystalline Si. The results have been compared to analysis performed on 28 nm nMOS where the Pt concentration is higher (10 at.% Pt). In this case, θ-Ni2Si is the first phase to form after RTA1 and NiSi is then formed at the same time on source (or drain) and gate after RTA2. The absence of the formation of NiSi from δ-Ni 2Si/Si(1 0 0) interface compared to θ-Ni2Si/Si(1 0 0) interface could be related to the difference of the interface energies. The redistributions of As and Pt in different silicides and interfaces were measured and discussed. In particular, it has been evidenced that Pt redistributions obtained on both 45 and 28 nm MOS transistors correspond to respective Pt distributions measured on blanket wafers. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gal(1-x)Mn(x)Sb epilayer was prepared on the n-type GaSb substrate by liquid phase epitaxy. The structure of the Gal(1-x)Mn(x)Sb epilayer was analyzed by double-crystal X-ray diffraction. From the difference of the lattice constant between the GaSb substrate and the Ga1-xMnxSb epilayer, the Mn content in the Ga1-xMnxSb epilayer were calculated as x = 0.016. The elemental composition of Ga1-xMnxSb epilayer was analyzed by energy dispersive spectrometer. The carrier concentration was obtained by Hall measurement. The hole concentration in the Ga1-xMnxSb epilayer is 4.06 x 10(19)cm(-3). It indicates that most of the Mn atoms in Ga1-xMnxSb take the site of Ga, and play a role of acceptors. The current-voltage curve of the Ga1-xMnxSb/GaSb heterostructure was measured, and the rectifying effect is obvious. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale GaN free-standing substrate was obtained by hydride vapor phase epitaxy directly on sapphire with porous network interlayer. The bottom surface N-face and top surface Ga-face showed great difference in anti-etching and optical properties. The variation of optical and structure characteristics were also microscopically identified using spatially resolved cathodoluminescence and micro-Raman spectroscopy in cross-section of the GaN substrate. Three different regions were separated according to luminescent intensity along the film growth orientation. Some tapered inversion domains with high free carrier concentration of 5 x 10(19) cm(-3) protruded up to the surface forming the hexagonal pits. The dark region of upper layer showed good crystalline quality with narrow donor bound exciton peak and low free carrier concentration. Unlike the exponential dependence of the strain distribution, the free-standing GaN substrate revealed a gradual increase of the strain mainly within the near N-polar side region with a thickness of about 50 mu m, then almost kept constant to the top surface. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In-plane optical anisotropy (IPOA) in (001) GaAs/AlGaAs superlattice induced by uniaxial strain has been investigated by reflectance difference spectroscopy (RDS). Uniaxial strain on the order of 10(-4) was introduced by bending a strip sample with a stress apparatus. The IPOA of all interband transitions shows a linear dependence on strain. The birefringence and dichroism spectra induced by strain are obtained by RDS on the basis of a three-phase model, which is in good agreement with the reported results. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A technique based on the integrations of the product of amplified spontaneous emission spectrum and a phase function over one mode interval is proposed for measuring gain spectrum for Fabry-Perot semiconductor lasers, and a gain correction factor related to the response function of the optical spectrum analyzer (OSA) is obtained for improving the accuracy of measured gain spectrum. The gain spectra with a difference less than 1.3 cm(-1) from 1500 to 1600 nm are obtained for a 250-mum-long semiconductor laser at the OSA resolution of 0.06, 0.1, 0.2, and 0.5 nm. The corresponding gain correction factor is about 9 cm(-1) at the resolution of 0.5 nm. The gain spectrum measured at the resolution of 0.5 nm has the same accuracy as that obtained by the Hakki-Paoli method at the resolution of 0.06 nm for the laser with the mode interval of 1.3 nm.