959 resultados para metric number theory


Relevância:

80.00% 80.00%

Publicador:

Resumo:

∗ This research is partially supported by the Bulgarian National Science Fund under contract MM-403/9

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper introduces a method for dependencies discovery during human-machine interaction. It is based on an analysis of numerical data sets in knowledge-poor environments. The driven procedures are independent and they interact on a competitive principle. The research focuses on seven of them. The application is in Number Theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are applied power mappings in algebras with logarithms induced by a given linear operator D in order to study particular properties of powers of logarithms. Main results of this paper will be concerned with the case when an algebra under consideration is commutative and has a unit and the operator D satisfies the Leibniz condition, i.e. D(xy) = xDy + yDx for x, y ∈ dom D. Note that in the Number Theory there are well-known several formulae expressed by means of some combinations of powers of logarithmic and antilogarithmic mappings or powers of logarithms and antilogarithms (cf. for instance, the survey of Schinzel S[1].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Бойко Бл. Банчев - Знае се, че рационалните числа образуват интересни и богати на изчислителни възможности структури като редици на Фарей (Феъри) и безкрайни дървета. Малко внимание се обръща на по-общо, систематично излагане на основните свойства на дробите като множество. Понятия биват въвеждани без обосноваване, някои доказателства са ненужно изкуствени, а почти винаги и едните, и другите като че биват отнесени към една или друга особена структура, вместо към множеството на дробите изобщо. Изненадващо е, че някои същностни твърдения изглежда дори не са формулирани в литературата по теория на числата. Тази статия има за цел да подобри състоянието на нещата в това отношение, като предлага общо, подходящо подредено изложение на понятия и свързани с тях твърдения. Като допълнение са представени бележки върху пораждането на множеството от всички дроби – откритие значително по-старо, отколкото е прието да се смята.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AMS subject classification: 90B80.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present the NumbersWithNames program which performs data-mining on the Encyclopedia of Integer Sequences to find interesting conjectures in number theory. The program forms conjectures by finding empirical relationships between a sequence chosen by the user and those in the Encyclopedia. Furthermore, it transforms the chosen sequence into another set of sequences about which conjectures can also be formed. Finally, the program prunes and sorts the conjectures so that themost plausible ones are presented first. We describe here the many improvements to the previous Prolog implementation which have enabled us to provide NumbersWithNames as an online program. We also present some new results from using NumbersWithNames, including details of an automated proof plan of a conjecture NumbersWithNames helped to discover.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mathematics can be found all over the world, even in what could be considered an unrelated area, like fiber arts. In knitting, crochet, and counted-thread embroidery, we can find concepts of algebra, graph theory, number theory, geometry of transformations, and symmetry, as well as computer science. For example, many fiber art pieces embody notions related with groups of symmetry. In this work, we focus on two areas of Mathematics associated with knitting, crochet, and cross-stitch works – number theory and geometry of transformations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two experiments tested predictions from a theory in which processing load depends on relational complexity (RC), the number of variables related in a single decision. Tasks from six domains (transitivity, hierarchical classification, class inclusion, cardinality, relative-clause sentence comprehension, and hypothesis testing) were administered to children aged 3-8 years. Complexity analyses indicated that the domains entailed ternary relations (three variables). Simpler binary-relation (two variables) items were included for each domain. Thus RC was manipulated with other factors tightly controlled. Results indicated that (i) ternary-relation items were more difficult than comparable binary-relation items, (ii) the RC manipulation was sensitive to age-related changes, (iii) ternary relations were processed at a median age of 5 years, (iv) cross-task correlations were positive, with all tasks loading on a single factor (RC), (v) RC factor scores accounted for 80% (88%) of age-related variance in fluid intelligence (compositionality of sets), (vi) binary- and ternary-relation items formed separate complexity classes, and (vii) the RC approach to defining cognitive complexity is applicable to different content domains. (C) 2002 Elsevier Science (USA). All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We prove an arithmetic version of a theorem of Hirzebruch and Zagier saying that Hirzebruch-Zagier divisors on a Hilbert modular surface are the coefficients of an elliptic modular form of weight 2. Moreover, we determine the arithmetic selfintersection number of the line bundle of modular forms equipped with its Petersson metric on a regular model of a Hilbert modular surface, and we study Faltings heights of arithmetic Hirzebruch-Zagier divisors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Among the different approaches for a construction of a fundamental quantum theory of gravity the Asymptotic Safety scenario conjectures that quantum gravity can be defined within the framework of conventional quantum field theory, but only non-perturbatively. In this case its high energy behavior is controlled by a non-Gaussian fixed point of the renormalization group flow, such that its infinite cutoff limit can be taken in a well defined way. A theory of this kind is referred to as non-perturbatively renormalizable. In the last decade a considerable amount of evidence has been collected that in four dimensional metric gravity such a fixed point, suitable for the Asymptotic Safety construction, indeed exists. This thesis extends the Asymptotic Safety program of quantum gravity by three independent studies that differ in the fundamental field variables the investigated quantum theory is based on, but all exhibit a gauge group of equivalent semi-direct product structure. It allows for the first time for a direct comparison of three asymptotically safe theories of gravity constructed from different field variables. The first study investigates metric gravity coupled to SU(N) Yang-Mills theory. In particular the gravitational effects to the running of the gauge coupling are analyzed and its implications for QED and the Standard Model are discussed. The second analysis amounts to the first investigation on an asymptotically safe theory of gravity in a pure tetrad formulation. Its renormalization group flow is compared to the corresponding approximation of the metric theory and the influence of its enlarged gauge group on the UV behavior of the theory is analyzed. The third study explores Asymptotic Safety of gravity in the Einstein-Cartan setting. Here, besides the tetrad, the spin connection is considered a second fundamental field. The larger number of independent field components and the enlarged gauge group render any RG analysis of this system much more difficult than the analog metric analysis. In order to reduce the complexity of this task a novel functional renormalization group equation is proposed, that allows for an evaluation of the flow in a purely algebraic manner. As a first example of its suitability it is applied to a three dimensional truncation of the form of the Holst action, with the Newton constant, the cosmological constant and the Immirzi parameter as its running couplings. A detailed comparison of the resulting renormalization group flow to a previous study of the same system demonstrates the reliability of the new equation and suggests its use for future studies of extended truncations in this framework.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Die vorliegende Arbeit widmet sich der Spektraltheorie von Differentialoperatoren auf metrischen Graphen und von indefiniten Differentialoperatoren auf beschränkten Gebieten. Sie besteht aus zwei Teilen. Im Ersten werden endliche, nicht notwendigerweise kompakte, metrische Graphen und die Hilberträume von quadratintegrierbaren Funktionen auf diesen betrachtet. Alle quasi-m-akkretiven Laplaceoperatoren auf solchen Graphen werden charakterisiert, und Abschätzungen an die negativen Eigenwerte selbstadjungierter Laplaceoperatoren werden hergeleitet. Weiterhin wird die Wohlgestelltheit eines gemischten Diffusions- und Transportproblems auf kompakten Graphen durch die Anwendung von Halbgruppenmethoden untersucht. Eine Verallgemeinerung des indefiniten Operators $-tfrac{d}{dx}sgn(x)tfrac{d}{dx}$ von Intervallen auf metrische Graphen wird eingeführt. Die Spektral- und Streutheorie der selbstadjungierten Realisierungen wird detailliert besprochen. Im zweiten Teil der Arbeit werden Operatoren untersucht, die mit indefiniten Formen der Art $langlegrad v, A(cdot)grad urangle$ mit $u,vin H_0^1(Omega)subset L^2(Omega)$ und $OmegasubsetR^d$ beschränkt, assoziiert sind. Das Eigenwertverhalten entspricht in Dimension $d=1$ einer verallgemeinerten Weylschen Asymptotik und für $dgeq 2$ werden Abschätzungen an die Eigenwerte bewiesen. Die Frage, wann indefinite Formmethoden für Dimensionen $dgeq 2$ anwendbar sind, bleibt offen und wird diskutiert.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cover title.