Borcherds products and arithmetic intersection theory on Hilbert modular surfaces


Autoria(s): Bruinier, Jan H. (Jan Hendrik), 1971-; Burgos Gil, José I.; Kühn, Ulf
Contribuinte(s)

Universitat de Barcelona

Data(s)

27/05/2010

Resumo

We prove an arithmetic version of a theorem of Hirzebruch and Zagier saying that Hirzebruch-Zagier divisors on a Hilbert modular surface are the coefficients of an elliptic modular form of weight 2. Moreover, we determine the arithmetic selfintersection number of the line bundle of modular forms equipped with its Petersson metric on a regular model of a Hilbert modular surface, and we study Faltings heights of arithmetic Hirzebruch-Zagier divisors.

Identificador

http://hdl.handle.net/2445/9171

Idioma(s)

eng

Publicador

Duke University Press

Direitos

(c) Duke University Press, 2007

info:eu-repo/semantics/openAccess

Palavras-Chave #Geometria algebraica aritmètica #Teoria de la intersecció #Arithmetic aspects of modular and Shimura varieties #Hilbert modular surfaces #Intersection theory #Arithmetic varieties and schemes
Tipo

info:eu-repo/semantics/article