Borcherds products and arithmetic intersection theory on Hilbert modular surfaces
Contribuinte(s) |
Universitat de Barcelona |
---|---|
Data(s) |
27/05/2010
|
Resumo |
We prove an arithmetic version of a theorem of Hirzebruch and Zagier saying that Hirzebruch-Zagier divisors on a Hilbert modular surface are the coefficients of an elliptic modular form of weight 2. Moreover, we determine the arithmetic selfintersection number of the line bundle of modular forms equipped with its Petersson metric on a regular model of a Hilbert modular surface, and we study Faltings heights of arithmetic Hirzebruch-Zagier divisors. |
Identificador | |
Idioma(s) |
eng |
Publicador |
Duke University Press |
Direitos |
(c) Duke University Press, 2007 info:eu-repo/semantics/openAccess |
Palavras-Chave | #Geometria algebraica aritmètica #Teoria de la intersecció #Arithmetic aspects of modular and Shimura varieties #Hilbert modular surfaces #Intersection theory #Arithmetic varieties and schemes |
Tipo |
info:eu-repo/semantics/article |