998 resultados para intelligence testing
Resumo:
Computational Intelligence (CI) includes four main areas: Evolutionary Computation (genetic algorithms and genetic programming), Swarm Intelligence, Fuzzy Systems and Neural Networks. This article shows how CI techniques overpass the strict limits of Artificial Intelligence field and can help solving real problems from distinct engineering areas: Mechanical, Computer Science and Electrical Engineering.
Resumo:
The Brazilian National Regulatory Agency for Private Health Insurance and Plans has recently published a technical note defining the criteria for the coverage of genetic testing to diagnose hereditary cancer. In this study we show the case of a patient with a breast lesion and an extensive history of cancer referred to a private service of genetic counseling. The patient met both criteria for hereditary breast and colorectal cancer syndrome screening. Her private insurance denied coverage for genetic testing because she lacks current or previous cancer diagnosis. After she appealed by lawsuit, the court was favorable and the test was performed using next-generation sequencing. A deletion of MLH1 exon 8 was found. We highlight the importance to offer genetic testing using multigene analysis for noncancer patients.
Resumo:
Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetic. The basic concept of GAs is designed to simulate processes in natural system necessary for evolution, specifically those that follow the principles first laid down by Charles Darwin of survival of the fittest. On the other hand, Particle swarm optimization (PSO) is a population based stochastic optimization technique inspired by social behavior of bird flocking or fish schooling. PSO shares many similarities with evolutionary computation techniques such as GAs. The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. PSO is attractive because there are few parameters to adjust. This paper presents hybridization between a GA algorithm and a PSO algorithm (crossing the two algorithms). The resulting algorithm is applied to the synthesis of combinational logic circuits. With this combination is possible to take advantage of the best features of each particular algorithm.
Resumo:
The main goals of the present work are the evaluation of the influence of several variables and test parameters on the melt flow index (MFI) of thermoplastics, and the determination of the uncertainty associated with the measurements. To evaluate the influence of test parameters on the measurement of MFI the design of experiments (DOE) approach has been used. The uncertainty has been calculated using a "bottom-up" approach given in the "Guide to the Expression of the Uncertainty of Measurement" (GUM). Since an analytical expression relating the output response (MFI) with input parameters does not exist, it has been necessary to build mathematical models by adjusting the experimental observations of the response variable in accordance with each input parameter. Subsequently, the determination of the uncertainty associated with the measurement of MFI has been performed by applying the law of propagation of uncertainty to the values of uncertainty of the input parameters. Finally, the activation energy (Ea) of the melt flow at around 200 degrees C and the respective uncertainty have also been determined.
Resumo:
Most of the traditional software and database development approaches tend to be serial, not evolutionary and certainly not agile, especially on data-oriented aspects. Most of the more commonly used methodologies are strict, meaning they’re composed by several stages each with very specific associated tasks. A clear example is the Rational Unified Process (RUP), divided into Business Modeling, Requirements, Analysis & Design, Implementation, Testing and Deployment. But what happens when the needs of a well design and structured plan, meet the reality of a small starting company that aims to build an entire user experience solution. Here resource control and time productivity is vital, requirements are in constant change, and so is the product itself. In order to succeed in this environment a highly collaborative and evolutionary development approach is mandatory. The implications of constant changing requirements imply an iterative development process. Project focus is on Data Warehouse development and business modeling. This area is usually a tricky one. Business knowledge is part of the enterprise, how they work, their goals, what is relevant for analyses are internal business processes. Throughout this document it will be explained why Agile Modeling development was chosen. How an iterative and evolutionary methodology, allowed for reasonable planning and documentation while permitting development flexibility, from idea to product. More importantly how it was applied on the development of a Retail Focused Data Warehouse. A productized Data Warehouse built on the knowledge of not one but several client needs. One that aims not just to store usual business areas but create an innovative sets of business metrics by joining them with store environment analysis, converting Business Intelligence into Actionable Business Intelligence.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Trabalho de Projecto apresentado como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Comunicação apresentada na 5ª Conferência Ibérica de Sistemas e Tecnologias de Informação – CISTI 2010, 16-19 Jun., Santiago de Compostela, Espanha. Vol. 2 pp. 329-334.
Resumo:
Second International Workshop on Analog and Mixed Signal Integrated Circuits for Space Applications (AMICSA 2008), Sintra, Portugal, Setembro de 2008
Resumo:
Based on the paper presented at the International Conference “Autonomous Systems: inter-relations of technical and societal issues”, organized by IET with the support of the Portuguese-German collaboration project on “Technology Assessment of Autonomous Robotics” (DAAD/CRUP) at FCT-UNL, Biblioteca da UNL, Campus de Caparica on 5-6 November 2009.
Resumo:
Comunicação apresentada na 6ª CAPSI - Conferência da Associação Portuguesa de Sistemas de Informação - Escola Superior de Tecnologia de Bragança, 26-28 de Outubro.
Resumo:
Decision making in any environmental domain is a complex and demanding activity, justifying the development of dedicated decision support systems. Every decision is confronted with a large variety and amount of constraints to satisfy as well as contradictory interests that must be sensibly accommodated. The first stage of a project evaluation is its submission to the relevant group of public (and private) agencies. The individual role of each agency is to verify, within its domain of competence, the fulfilment of the set of applicable regulations. The scope of the involved agencies is wide and ranges from evaluation abilities on the technical or economical domains to evaluation competences on the environmental or social areas. The second project evaluation stage involves the gathering of the recommendations of the individual agencies and their justified merge to produce the final conclusion. The incorporation and accommodation of the consulted agencies opinions is of extreme importance: opinions may not only differ, but can be interdependent, complementary, irreconcilable or, simply, independent. The definition of adequate methodologies to sensibly merge, whenever possible, the existing perspectives while preserving the overall legality of the system, will lead to the making of sound justified decisions. The proposed Environmental Decision Support System models the project evaluation activity and aims to assist developers in the selection of adequate locations for their projects, guaranteeing their compliance with the applicable regulations.
Resumo:
Current Manufacturing Systems challenges due to international economic crisis, market globalization and e-business trends, incites the development of intelligent systems to support decision making, which allows managers to concentrate on high-level tasks management while improving decision response and effectiveness towards manufacturing agility. This paper presents a novel negotiation mechanism for dynamic scheduling based on social and collective intelligence. Under the proposed negotiation mechanism, agents must interact and collaborate in order to improve the global schedule. Swarm Intelligence (SI) is considered a general aggregation term for several computational techniques, which use ideas and inspiration from the social behaviors of insects and other biological systems. This work is primarily concerned with negotiation, where multiple self-interested agents can reach agreement over the exchange of operations on competitive resources. Experimental analysis was performed in order to validate the influence of negotiation mechanism in the system performance and the SI technique. Empirical results and statistical evidence illustrate that the negotiation mechanism influence significantly the overall system performance and the effectiveness of Artificial Bee Colony for makespan minimization and on the machine occupation maximization.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.
Resumo:
A candidin, which is a suspension of killed yeast cells, is commonly used for intradermal tests of delayed hypersensitivity, to evaluate the immunological cellular competence of the patient, when the test is applied along with other similar tests. When working with a cellular antigen, the histopathology of positive skin tests reveals a cellular infiltrate which not only presents a characteristic hypersensitivity reaction but also a neutrophilic abscess in the central part. This research presents the results of a comparison between the yeast cell suspension and the polysaccharide antigens, both obtained from the same strains of Candida albicans. The results obtained by skin tests in one hundred individuals were 61.0% with the polysaccharide antigen and 69.0% with the yeast cell suspension antigen. Concordant results concerning the two antigens were observed in 82.0% of the individuals. The discussion section presents an assumption to explain the differences of positivity obtained with the two antigens. We conclude that the polysaccharide antigen can be utilized in the intradermal test of delayed hypersensitivity to Candida albicans.