899 resultados para high performance liquid chromatography with diode array detection
Resumo:
2012
Resumo:
Of novel sedimentary transformation products of bacteriochlorophyll a, 7,8-didehydro derivatives (Bacterioviridins), has been identified using high performance liquid chromatography with photodiode array detection and atmospheric pressure chemical ionisation liquid chromatography-multistage mass spectrometry. The derivatives occur in a range of sediments including Priest Pot (UK), les Salines de la Trinital, Ebre delta (Spain), Sutton-on-the-Forest (UK) and Certes (France). The Bacterioviridins are products of oxidative transformation of bacteriochlorophyll a, and their presence in sediments indicates exposure of the bacterial community to oxygen.
Resumo:
Casearia sylvestris Swartz (Salicaceae) is a tree or shrub distributed widely in Brazil, where it is used in popular medicine. Several bioactive clerodane diterpenes typical of Casearia have been isolated from this species (e.g. casearins and casearvestrins). The main objective of this study was to identify clerodane diterpenes in various organs of C. sylvestris, using chromatographic and spectroscopic analytical techniques. The extracts of the different plant parts were analyzed by thin layer chromatography, high performance liquid chromatography with diode array detector and 1H nuclear magnetic resonance. In the chromatographic analysis, clerodane diterpenes isolated from C. sylvestris were used as standards, including rel-19Sacetóxi-18R- butanoilóxi-18,19- epóxi -6S -hidróxi -2R-(2-metilbutanoilóxi) -5S, 8R, 9R, 10S -cleroda-3,13(16),14-triene, isolated for the first time from the stems. Phytochemical profiles of the organs were produced, which indicated the presence of clerodane diterpenes in all parts of the plant, notably in the leaves. The results also suggest that the main clerodane diterpenes in the stems, flowers and roots had conjugated double-bond patterns that differed from those found in the leaves.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Alimentos e Nutrição - FCFAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A sensitive and efficient method for simultaneous determination of glutamic acid (Glu), gamma-amino-butyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat endbrains was developed by high-performance liquid chromatography (HPLC) with fluorescence detection and on-line mass spectrometric identification following derivatization with 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC). Different parameters which influenced derivatization and separation were optimized. The complete separation of five neurotransmitter (NT) derivatives was performed on a reversed-phase Hypersil BDS-C-18 column with a gradient elution. The rapid structure identification of five neurotransmitter derivatives was carried out by on-line mass spectrometry with electrospray ionization (ESI) source in positive ion mode, and the BCEOC-labeled derivatives were characterized by easy-to-interpret mass spectra. Stability of derivatives, repeatability, precision and accuracy were evaluated and the results were excellent for efficient HPLC analysis. The quantitative linear range of five neurotransmitters were 2.441-2 x 10(4) nM, and limits of detection were in the range of 0.398-1.258 nM (S/N = 3:1). The changes of their concentrations in endbrains of three rat groups were also studied using this HPLC fluorescence detection method. The results indicated that exhausting exercise could obviously influence the concentrations of neurotransmitters in rat endbrains. The established method exhibited excellent validity, high sensitivity and convenience, and provided a new technique for simultaneous analysis of monoamine and amino acid neurotransmitters in rat brain. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new method for the sensitive determination of amino acids and peptides using the tagging reagent 2-(9-carbazole)-ethyl chloroformate (CEOC) with fluorescence (FL) detection has been developed. Identification of derivatives was carried out by liquid chromotography mass spectrometry. The chromophore in the 2-(9-fluorenyl)-ethyl chloroformate (FMOC) reagent was replaced by carbazole, which resulted in a sensitive fluorescence lerivatizing agent CEOC. CEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. Studies on derivatization demonstrate excellent derivative yields over the pH range 8.8-10.0. Maximal yields close to 100% are observed with three- to fourfold molar reagent excess. Derivatives exhibit strong fluorescence and allow direct injection of the reaction mixture with no significant disturbance from the major fluorescent reagent degradation by-products, such as 2(9-carbazole)-ethanol and bis-(2-(9-carbazole)-ethyl) carbonate. In addition, the detection responses for CEOC derivatives are compared to those obtained with FMOC. The ratios AC(CEOC)/AC(FMOC) = 1.00-1.82 for fluorescence (FL) response and AC'(CEOC)/AC'(FMOC) = 1.00-1.21 for ultraviolet (UV) response are observed (here, AC and AC' are, respectively, FL and UV F response). Separation of the derivatized peptides and amino acids has been optimized on a Hypersil BDS C18 column. Excellent linear responses are observed. This method was used successfully to analyze protein hydrolysates from wool and from direct-derivatized beer. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
A relatively simple, selective, precise and accurate high performance liquid chromatography (HPLC) method based on a reaction of phenylisothiocyanate (PITC) with glucosamine (GL) in alkaline media was developed and validated to determine glucosamine hydrochloride permeating through human skin in vitro. It is usually problematic to develop an accurate assay for chemicals traversing skin because the excellent barrier properties of the tissue ensure that only low amounts of the material pass through the membrane and skin components may leach out of the tissue to interfere with the analysis. In addition, in the case of glucosamine hydrochloride, chemical instability adds further complexity to assay development. The assay, utilising the PITC-GL reaction was refined by optimizing the reaction temperature, reaction time and PITC concentration. The reaction produces a phenylthiocarbamyl-glucosamine (PTC-GL) adduct which was separated on a reverse-phase (RP) column packed with 5 microm ODS (C18) Hypersil particles using a diode array detector (DAD) at 245 nm. The mobile phase was methanol-water-glacial acetic acid (10:89.96:0.04 v/v/v, pH 3.5) delivered to the column at 1 ml min-1 and the column temperature was maintained at 30 degrees C. Galactosamine hydrochloride (Gal-HCl) was used as an internal standard. Using a saturated aqueous solution of glucosamine hydrochloride, in vitro permeation studies were performed at 32+/-1 degrees C over 48 h using human epidermal membranes prepared by a heat separation method and mounted in Franz-type diffusion cells with a diffusional area 2.15+/-0.1 cm2. The optimum derivatisation reaction conditions for reaction temperature, reaction time and PITC concentration were found to be 80 degrees C, 30 min and 1% v/v, respectively. PTC-Gal and GL adducts eluted at 8.9 and 9.7 min, respectively. The detector response was found to be linear in the concentration range 0-1000 microg ml-1. The assay was robust with intra- and inter-day precisions (described as a percentage of relative standard deviation, %R.S.D.) <12. Intra- and inter-day accuracy (as a percentage of the relative error, %RE) was <or=-5.60 and <or=-8.00, respectively. Using this assay, it was found that GL-HCl permeates through human skin with a flux 1.497+/-0.42 microg cm-2 h-1, a permeability coefficient of 5.66+/-1.6x10(-6) cm h-1 and with a lag time of 10.9+/-4.6 h.
Resumo:
A relatively simple, selective, precise and accurate high performance liquid chromatography (HPLC) method based on a reaction of phenylisothiocyanate (PITC) with glucosamine (GL) in alkaline media was developed and validated to determine glucosamine hydrochloride permeating through human skin in vitro. It is usually problematic to develop an accurate assay for chemicals traversing skin because the excellent barrier properties of the tissue ensure that only low amounts of the material pass through the membrane and skin components may leach out of the tissue to interfere with the analysis. In addition, in the case of glucosamine hydrochloride, chemical instability adds further complexity to assay development. The assay, utilising the PITC-GL reaction was refined by optimizing the reaction temperature, reaction time and PITC concentration. The reaction produces a phenylthiocarbarnyl-glucosamine (PTC-GL) adduct which was separated on a reverse-phase (RP) column packed with 5 mu m ODS (C-18) Hypersil particles using a diode array detector (DAD) at 245 nm. The mobile phase was methanol-water-glacial acetic acid (10:89.96:0.04 v/v/v, pH 3.5) delivered to the column at 1 ml min(-1) and the column temperature was maintained at 30 degrees C Using a saturated aqueous solution of glucosamine hydrochloride, in vitro permeation studies were performed at 32 +/- 1 degrees C over 48 h using human epidermal membranes prepared by a heat separation method and mounted in Franz-type diffusion cells with a diffusional area 2.15 +/- 0.1 cm(2). The optimum derivatisation reaction conditions for reaction temperature, reaction time and PITC concentration were found to be 80 degrees C, 30 min and 1 % v/v, respectively. PTC-Gal and GL adducts eluted at 8.9 and 9.7 min, respectively. The detector response was found to be linear in the concentration range 0-1000 mu g ml(-1). The assay was robust with intra- and inter-day precisions (described as a percentage of relative standard deviation, %R.S.D.) < 12. Intra- and inter-day accuracy (as a percentage of the relative error, %RE) was <=-5.60 and <=-8.00, respectively. Using this assay, it was found that GL-HCI permeates through human skin with a flux 1.497 +/- 0.42 mu g cm(-2) h(-1), a permeability coefficient of 5.66 +/- 1.6 x 10(-6) cm h(-1) and with a lag time of 10.9 +/- 4.6 h. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The ratio of methanol., water and trifluoroacetic acid ( TFA) was regulated to change the polarity and the pH of the rinse solution and the eluent, so as to improve the high performance liquid chromatography HPLC) detection method for trace microcystines (MCs) in natural water bodies. The results showed that 40 % similar to 45 % methanol-water solution containing 0. 1 % TFA could get good effects on the rinse of impurity, and 70% methanol-water solution containing 0. 1% TFA could elute all the MCs in solid phase extraction ( SPE) cartridge ( C-18), In this way. it is suggested that, in analysis of environmental samples with high concentration of impurity, impurity should be washed with 40% similar to 45% methanol-water solution containing 0. 1% TFA, and MCs should be eluted with 70% similar to 100% methanol-water solution containing 0. 1% TFA.
Resumo:
The research work in this thesis reports rapid separation of biologically important low molecular weight compounds by microchip electrophoresis and ultrahigh liquid chromatography. Chapter 1 introduces the theory and principles behind capillary electrophoresis separation. An overview of the history, different modes and detection techniques coupled to CE is provided. The advantages of microchip electrophoresis are highlighted. Some aspects of metal complex analysis by capillary electrophoresis are described. Finally, the theory and different modes of the liquid chromatography technology are presented. Chapter 2 outlines the development of a method for the capillary electrophoresis of (R, S) Naproxen. Variable parameters of the separation were optimized (i.e. buffer concentration and pH, concentration of chiral selector additives, applied voltage and injection condition).The method was validated in terms of linearity, precision, and LOD. The optimized method was then transferred to a microchip electrophoresis system. Two different types of injection i.e. gated and pinched, were investigated. This microchip method represents the fastest reported chiral separation of Naproxen to date. Chapter 3 reports ultra-fast separation of aromatic amino acid by capillary electrophoresis using the short-end technique. Variable parameters of the separation were optimized and validated. The optimized method was then transferred to a microchip electrophoresis system where the separation time was further reduced. Chapter 4 outlines the use of microchip electrophoresis as an efficient tool for analysis of aluminium complexes. A 2.5 cm channel with linear imaging UV detection was used to separate and detect aluminium-dopamine complex and free dopamine. For the first time, a baseline, separation of aluminium dopamine was achieved on a 15 seconds timescale. Chapter 5 investigates a rapid, ultra-sensitive and highly efficient method for quantification of histamine in human psoriatic plaques using microdialysis and ultrahigh performance liquid chromatography with fluorescence detection. The method utilized a sub-two-micron packed C18 stationary phase. A fluorescent reagent, 4-(1-pyrene) butyric acid N-hydroxysuccinimide ester was conjugated to the primary and secondary amino moieties of histamine. The dipyrene-labeled histamine in human urine was also investigated by ultrahigh pressure liquid chromatography using a C18 column with 1.8 μm particle diameter. These methods represent one of the fastest reported separations to date of histamine using fluorescence detection.
Resumo:
The potential for coupling technologies to deliver new, improved forms of bioanalysis is still in its infancy. We review a number of examples in which coupling has been successful, with special emphasis on combining surface-plasmon-resonance biosensors with mass spectrometry. We give an overview of current progress towards combining biosensor-based bioanalysis with chemical analysis for confirmation of paralytic shellfish poisons that are marine toxins. This comprehensive approach could be an alternative to the official methods currently used (e.g., animal testing and high-performance liquid chromatography with fluorescence detection) and could serve as a model for many more such applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Simple and rapid procedures were developed for the quantification of amfepramone hydrochloride and diazepam and mazindol and diazepam in tablets using high performance liquid chromatography (HPLC) with UV detection. These techniques provided conditions for the separation of each active ingredient from the complex matrices of the dosage forms by dilution or extraction in methanol. Isocratic reversed phase chromatography was performed using acetonitrile, methanol, and aqueous 0,1% ammonium carbonate (70:10:20, v/v/v) as a mobile phase, Radial-Pak C-18 column (100 x 8 mm id, 4 mu m), a column temperature of 25+/-1 degrees C and detection at 255 nm. The calibration curves were linear over a wide concentration range (100-1000 mu g.mL(-1) to amfepramone hydrochloride and mazindol and 10-100 mu g.mL(-1) to diazepam) with good correlation factors of 0.9978, 0.9956 and 0.9997 for amfepramone hydrochloride, mazindol, and diazepam, respectively.Mean recoveries obtained from the two kinds of samples ranged from 83.2 to 102.5%, with coefficients of variation ranging from 1.0 to 6.1.These results demonstrated the efficiency of the proposed methods, as well as advantages such as simplicity and short duration of analysis.