940 resultados para generative and performative modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this study was to evaluate the hydraulic performance of riprap spurs and weirs in controlling bank erosion at the Southern part of the Raccoon River upstream U.S. Highway 169 Bridge utilizing the commercially available model FESWMS and field monitoring. It was found based on a 2 year monitoring and numerical modeling that the design of structures was overall successful, including their spacing and stability. The riprap material incorporated into the structures was directly and favorably correlated to the flow transmission through the structure, or in other words, dictated the permeable nature of the structure. It was found that the permeable dikes and weirs chosen in this study created less volume of scour in the vicinity of the structure toes and thus have less risk comparatively to other impermeable structures to collapse. The fact that the structures permitted the transmission of flow through them it allowed fine sand particles to fill in the gaps of the rock interstices and thus cement and better stabilize the structures. During bank-full flows the maximum scour hole was recorded away from the structures toe and the scourhole size was directly related to the protrusion angle of the structure to the flow. It was concluded that the proposed structure inclination with respect to the main flow direction was appropriate since it provides maximum bank protection while creating the largest volume of local scour away from the structure and towards the center of the channel. Furthermore, the lowest potential for bank erosion also occurs with the present set-up design chosen by the IDOT. About 2 ft of new material was deposited in the area located between the structures for the period extending from the construction day to May 2007. Surveys obtained by sonar and the presence of vegetation indicate that new material has been added at the bank toes. Finally, the structures provided higher variability in bed topography forming resting pools, creating flow shade on the leeward side of the structure, and separation of bed substrate due to different flow conditions. Another notable environmental benefit to rock riprap weirs and dikes is the creation of resting pools, especially in year 2007 (2nd year of the project). The magnitude of these benefits to aquatic habitat has been found in the literature that is directly related to the induced scour-hole volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a result of forensic investigations of problems across Iowa, a research study was developed aimed at providing solutions to identified problems through better management and optimization of the available pavement geotechnical materials and through ground improvement, soil reinforcement, and other soil treatment techniques. The overall goal was worked out through simple laboratory experiments, such as particle size analysis, plasticity tests, compaction tests, permeability tests, and strength tests. A review of the problems suggested three areas of study: pavement cracking due to improper management of pavement geotechnical materials, permeability of mixed-subgrade soils, and settlement of soil above the pipe due to improper compaction of the backfill. This resulted in the following three areas of study: (1) The optimization and management of earthwork materials through general soil mixing of various select and unsuitable soils and a specific example of optimization of materials in earthwork construction by soil mixing; (2) An investigation of the saturated permeability of compacted glacial till in relation to validation and prediction with the Enhanced Integrated Climatic Model (EICM); and (3) A field investigation and numerical modeling of culvert settlement. For each area of study, a literature review was conducted, research data were collected and analyzed, and important findings and conclusions were drawn. It was found that optimum mixtures of select and unsuitable soils can be defined that allow the use of unsuitable materials in embankment and subgrade locations. An improved model of saturated hydraulic conductivity was proposed for use with glacial soils from Iowa. The use of proper trench backfill compaction or the use of flowable mortar will reduce the potential for developing a bump above culverts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Atlas Mountains in Morocco are considered as type examples of intracontinental chains, with high topography that contrasts with moderate crustal shortening and thickening. Whereas recent geological studies and geodynamic modeling have suggested the existence of dynamic topography to explain this apparent contradiction, there is a lack of modern geophysical data at the crustal scale to corroborate this hypothesis. Newly-acquired magnetotelluric data image the electrical resistivity distribution of the crust from the Middle Atlas to the Anti-Atlas, crossing the tabular Moulouya Plain and the High Atlas. All the units show different and unique electrical signatures throughout the crust reflecting the tectonic history of development of each one. In the upper crust electrical resistivity values may be associated to sediment sequences in the Moulouya and Anti-Atlas and to crustal scale fault systems in the High Atlas developed during the Cenozoic times. In the lower crust the low resistivity anomaly found below the Mouluya plain, together with other geophysical (low velocity anomaly, lack of earthquakes and minimum Bouguer anomaly) and geochemical (Neogene-Quaternary intraplate alkaline volcanic fields) evidence, infer the existence of a small degree of partial melt at the base of the lower crust. The low resistivity anomaly found below the Anti-Atlas may be associated with a relict subduction of Precambrian oceanic sediments, or to precipitated minerals during the release of fluids from the mantle during the accretion of the Anti-Atlas to the West African Supercontinent during the Panafrican orogeny ca. 685 Ma).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TWEAK (TNF homologue with weak apoptosis-inducing activity) and Fn14 (fibroblast growth factor-inducible protein 14) are members of the tumor necrosis factor (TNF) ligand and receptor super-families. Having observed that Xenopus Fn14 cross-reacts with human TWEAK, despite its relatively low sequence homology to human Fn14, we examined the conservation in tertiary fold and binding interfaces between the two species. Our results, combining NMR solution structure determination, binding assays, extensive site-directed mutagenesis and molecular modeling, reveal that, in addition to the known and previously characterized β-hairpin motif, the helix-loop-helix motif makes an essential contribution to the receptor/ligand binding interface. We further discuss the insight provided by the structural analyses regarding how the cysteine-rich domains of the TNF receptor super-family may have evolved over time. DATABASE: Structural data are available in the Protein Data Bank/BioMagResBank databases under the accession codes 2KMZ, 2KN0 and 2KN1 and 17237, 17247 and 17252. STRUCTURED DIGITAL ABSTRACT: TWEAK binds to hFn14 by surface plasmon resonance (View interaction) xeFn14 binds to TWEAK by enzyme linked immunosorbent assay (View interaction) TWEAK binds to xeFn14 by surface plasmon resonance (View interaction) hFn14 binds to TWEAK by enzyme linked immunosorbent assay (View interaction).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les plantes sont essentielles pour les sociétés humaines. Notre alimentation quotidienne, les matériaux de constructions et les sources énergétiques dérivent de la biomasse végétale. En revanche, la compréhension des multiples aspects développementaux des plantes est encore peu exploitée et représente un sujet de recherche majeur pour la science. L'émergence des technologies à haut débit pour le séquençage de génome à grande échelle ou l'imagerie de haute résolution permet à présent de produire des quantités énormes d'information. L'analyse informatique est une façon d'intégrer ces données et de réduire la complexité apparente vers une échelle d'abstraction appropriée, dont la finalité est de fournir des perspectives de recherches ciblées. Ceci représente la raison première de cette thèse. En d'autres termes, nous appliquons des méthodes descriptives et prédictives combinées à des simulations numériques afin d'apporter des solutions originales à des problèmes relatifs à la morphogénèse à l'échelle de la cellule et de l'organe. Nous nous sommes fixés parmi les objectifs principaux de cette thèse d'élucider de quelle manière l'interaction croisée des phytohormones auxine et brassinosteroïdes (BRs) détermine la croissance de la cellule dans la racine du méristème apical d'Arabidopsis thaliana, l'organisme modèle de référence pour les études moléculaires en plantes. Pour reconstruire le réseau de signalement cellulaire, nous avons extrait de la littérature les informations pertinentes concernant les relations entre les protéines impliquées dans la transduction des signaux hormonaux. Le réseau a ensuite été modélisé en utilisant un formalisme logique et qualitatif pour pallier l'absence de données quantitatives. Tout d'abord, Les résultats ont permis de confirmer que l'auxine et les BRs agissent en synergie pour contrôler la croissance de la cellule, puis, d'expliquer des observations phénotypiques paradoxales et au final, de mettre à jour une interaction clef entre deux protéines dans la maintenance du méristème de la racine. Une étude ultérieure chez la plante modèle Brachypodium dystachion (Brachypo- dium) a révélé l'ajustement du réseau d'interaction croisée entre auxine et éthylène par rapport à Arabidopsis. Chez ce dernier, interférer avec la biosynthèse de l'auxine mène à la formation d'une racine courte. Néanmoins, nous avons isolé chez Brachypodium un mutant hypomorphique dans la biosynthèse de l'auxine qui affiche une racine plus longue. Nous avons alors conduit une analyse morphométrique qui a confirmé que des cellules plus anisotropique (plus fines et longues) sont à l'origine de ce phénotype racinaire. Des analyses plus approfondies ont démontré que la différence phénotypique entre Brachypodium et Arabidopsis s'explique par une inversion de la fonction régulatrice dans la relation entre le réseau de signalisation par l'éthylène et la biosynthèse de l'auxine. L'analyse morphométrique utilisée dans l'étude précédente exploite le pipeline de traitement d'image de notre méthode d'histologie quantitative. Pendant la croissance secondaire, la symétrie bilatérale de l'hypocotyle est remplacée par une symétrie radiale et une organisation concentrique des tissus constitutifs. Ces tissus sont initialement composés d'une douzaine de cellules mais peuvent aisément atteindre des dizaines de milliers dans les derniers stades du développement. Cette échelle dépasse largement le seuil d'investigation par les moyens dits 'traditionnels' comme l'imagerie directe de tissus en profondeur. L'étude de ce système pendant cette phase de développement ne peut se faire qu'en réalisant des coupes fines de l'organe, ce qui empêche une compréhension des phénomènes cellulaires dynamiques sous-jacents. Nous y avons remédié en proposant une stratégie originale nommée, histologie quantitative. De fait, nous avons extrait l'information contenue dans des images de très haute résolution de sections transverses d'hypocotyles en utilisant un pipeline d'analyse et de segmentation d'image à grande échelle. Nous l'avons ensuite combiné avec un algorithme de reconnaissance automatique des cellules. Cet outil nous a permis de réaliser une description quantitative de la progression de la croissance secondaire révélant des schémas développementales non-apparents avec une inspection visuelle classique. La formation de pôle de phloèmes en structure répétée et espacée entre eux d'une longueur constante illustre les bénéfices de notre approche. Par ailleurs, l'exploitation approfondie de ces résultats a montré un changement de croissance anisotropique des cellules du cambium et du phloème qui semble en phase avec l'expansion du xylème. Combinant des outils génétiques et de la modélisation biomécanique, nous avons démontré que seule la croissance plus rapide des tissus internes peut produire une réorientation de l'axe de croissance anisotropique des tissus périphériques. Cette prédiction a été confirmée par le calcul du ratio des taux de croissance du xylème et du phloème au cours de développement secondaire ; des ratios élevés sont effectivement observés et concomitant à l'établissement progressif et tangentiel du cambium. Ces résultats suggèrent un mécanisme d'auto-organisation établi par un gradient de division méristématique qui génèrent une distribution de contraintes mécaniques. Ceci réoriente la croissance anisotropique des tissus périphériques pour supporter la croissance secondaire. - Plants are essential for human society, because our daily food, construction materials and sustainable energy are derived from plant biomass. Yet, despite this importance, the multiple developmental aspects of plants are still poorly understood and represent a major challenge for science. With the emergence of high throughput devices for genome sequencing and high-resolution imaging, data has never been so easy to collect, generating huge amounts of information. Computational analysis is one way to integrate those data and to decrease the apparent complexity towards an appropriate scale of abstraction with the aim to eventually provide new answers and direct further research perspectives. This is the motivation behind this thesis work, i.e. the application of descriptive and predictive analytics combined with computational modeling to answer problems that revolve around morphogenesis at the subcellular and organ scale. One of the goals of this thesis is to elucidate how the auxin-brassinosteroid phytohormone interaction determines the cell growth in the root apical meristem of Arabidopsis thaliana (Arabidopsis), the plant model of reference for molecular studies. The pertinent information about signaling protein relationships was obtained through the literature to reconstruct the entire hormonal crosstalk. Due to a lack of quantitative information, we employed a qualitative modeling formalism. This work permitted to confirm the synergistic effect of the hormonal crosstalk on cell elongation, to explain some of our paradoxical mutant phenotypes and to predict a novel interaction between the BREVIS RADIX (BRX) protein and the transcription factor MONOPTEROS (MP),which turned out to be critical for the maintenance of the root meristem. On the same subcellular scale, another study in the monocot model Brachypodium dystachion (Brachypodium) revealed an alternative wiring of auxin-ethylene crosstalk as compared to Arabidopsis. In the latter, increasing interference with auxin biosynthesis results in progressively shorter roots. By contrast, a hypomorphic Brachypodium mutant isolated in this study in an enzyme of the auxin biosynthesis pathway displayed a dramatically longer seminal root. Our morphometric analysis confirmed that more anisotropic cells (thinner and longer) are principally responsible for the mutant root phenotype. Further characterization pointed towards an inverted regulatory logic in the relation between ethylene signaling and auxin biosynthesis in Brachypodium as compared to Arabidopsis, which explains the phenotypic discrepancy. Finally, the morphometric analysis of hypocotyl secondary growth that we applied in this study was performed with the image-processing pipeline of our quantitative histology method. During its secondary growth, the hypocotyl reorganizes its primary bilateral symmetry to a radial symmetry of highly specialized tissues comprising several thousand cells, starting with a few dozens. However, such a scale only permits observations in thin cross-sections, severely hampering a comprehensive analysis of the morphodynamics involved. Our quantitative histology strategy overcomes this limitation. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with an automated cell type recognition algorithm, it allows precise quantitative characterization of vascular development and reveals developmental patterns that were not evident from visual inspection, for example the steady interspace distance of the phloem poles. Further analyses indicated a change in growth anisotropy of cambial and phloem cells, which appeared in phase with the expansion of xylem. Combining genetic tools and computational modeling, we showed that the reorientation of growth anisotropy axis of peripheral tissue layers only occurs when the growth rate of central tissue is higher than the peripheral one. This was confirmed by the calculation of the ratio of the growth rate xylem to phloem throughout secondary growth. High ratios are indeed observed and concomitant with the homogenization of cambium anisotropy. These results suggest a self-organization mechanism, promoted by a gradient of division in the cambium that generates a pattern of mechanical constraints. This, in turn, reorients the growth anisotropy of peripheral tissues to sustain the secondary growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tutkimuksen päätavoite on arvioida, ovatko neljä ohjelmistovaihtoehtoa riittäviä tuotannon aikataulutuksen työkaluja ja mikä työkaluista sopii toimeksiantajayritykselle. Alatavoitteena on kuvata tuotannon aikataulutuksen nyky- ja tahtotila prosessimallinnuksen avulla, selvittää työkalun käyttäjätarpeet ja määritellä priorisoidut valintakriteerit työkalulle.Tutkimuksen teoriaosuudessa tutkitaan tuotannon aikataulutuksen logiikkaa ja haasteita. Työssä tarkastellaan aikataulutusohjelmiston valintaa rinnakkain prosessinmallinnuksen kanssa. Aikataulutusohjelmistovaihtoehdot ja metodit käyttäjätarpeiden selvittämiseksi käydään läpi. Empiriaosuudessa selvitetään tutkimuksen suhde toimeksiantajayrityksen strategiaan. Käyttäjätarpeet selvitetään haastattelujen avulla jaanalysoidaan QFD matriisin avulla. Toimeksiantajayrityksen tuotannon aikataulutuksen nyky- ja tahtotilaprosessit mallinnetaan, jotta ohjelmistojen sopivuutta, aikataulutusprosessia tukevana työkaluna voidaan arvioida.Tutkimustuloksena ovatpriorisoidut valintakriteerit aikataulutustyökalulle eli käyttäjätarpeista johdetut tärkeimmät toiminnalliset ominaisuudet, järjestelmätoimittaja-arvio sekä suositukset jatkotoimenpiteistä ja lisätutkimuksesta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finland has large forest fuel resources. However, the use of forest fuels for energy production has been low, except for small-scale use in heating. According to national action plans and programs related to wood energy promotion, the utilization of such resources will be multiplied over the next few years. The most significant part of this growth will be based on the utilization of forest fuels, produced from logging residues of regeneration fellings, in industrial and municipal power and heating plants. Availability of logging residues was analyzed by means of resource and demand approaches in order to identify the most suitable regions with focus on increasing the forest fuel usage. The analysis included availability and supply cost comparisons between power plant sites and resource allocation in a least cost manner, and between a predefined power plant structure under demand and supply constraints. Spatial analysis of worksite factors and regional geographies were carried out using the GIS-model environment via geoprocessing and cartographic modeling tools. According to the results of analyses, the cost competitiveness of forest fuel supply should be improved in order to achieve the designed objectives in the near future. Availability and supply costs of forest fuels varied spatially and were very sensitive to worksite factors and transport distances. According to the site-specific analysis the supply potential between differentlocations can be multifold. However, due to technical and economical reasons ofthe fuel supply and dense power plant infrastructure, the supply potential is limited at plant level. Therefore, the potential and supply cost calculations aredepending on site-specific matters, where regional characteristics of resourcesand infrastructure should be taken into consideration, for example by using a GIS-modeling approach constructed in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Atlas Mountains in Morocco are considered as type examples of intracontinental chains, with high topography that contrasts with moderate crustal shortening and thickening. Whereas recent geological studies and geodynamic modeling have suggested the existence of dynamic topography to explain this apparent contradiction, there is a lack of modern geophysical data at the crustal scale to corroborate this hypothesis. Newly-acquired magnetotelluric data image the electrical resistivity distribution of the crust from the Middle Atlas to the Anti-Atlas, crossing the tabular Moulouya Plain and the High Atlas. All the units show different and unique electrical signatures throughout the crust reflecting the tectonic history of development of each one. In the upper crust electrical resistivity values may be associated to sediment sequences in the Moulouya and Anti-Atlas and to crustal scale fault systems in the High Atlas developed during the Cenozoic times. In the lower crust the low resistivity anomaly found below the Mouluya plain, together with other geophysical (low velocity anomaly, lack of earthquakes and minimum Bouguer anomaly) and geochemical (Neogene-Quaternary intraplate alkaline volcanic fields) evidence, infer the existence of a small degree of partial melt at the base of the lower crust. The low resistivity anomaly found below the Anti-Atlas may be associated with a relict subduction of Precambrian oceanic sediments, or to precipitated minerals during the release of fluids from the mantle during the accretion of the Anti-Atlas to the West African Supercontinent during the Panafrican orogeny ca. 685 Ma).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes to reflect from a semiotic perspective on the transformation that brands have undergone since the rise of the Internet. After a brief theoretical introduction to digital communication and the semiotics of brands, the case of the Google brand is analyzed by applying concepts of generative and interpretive semiotics. The paper holds that the iconic and linguistic enunciations are secondary with respect to interaction. In digital media interaction — the interactive experience that the Internet user lives — is a fundamental component of the hypermedia cocktail and occupies a central position in the brand building process. The article concludes with some of the questions and special characteristics raised by so-called eBranding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The developing energy markets and rising energy system costs have sparked the need to find new forms of energy production and increase the self-sufficiency of energy production. One alternative is gasification, whose principles have been known for decades, but it is only recently when the technology has become a true alternative. However, in order to meet the requirements of modern energy production methods, it is necessary to study the phenomenon thoroughly. In order to understand the gasification process better and optimize it from the viewpoint of ecology and energy efficiency, it is necessary to develop effective and reliable modeling tools for gasifiers. The main aims of this work have been to understand gasification as a process and furthermore to develop an existing three-dimensional circulating fluidized bed modeling tool for modeling of gasification. The model is applied to two gasification processes of 12 and 50 MWth. The results of modeling and measurements have been compared and subsequently reviewed. The work was done in co-operation with Lappeenranta University of Technology and Foster Wheeler Energia Oy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical models often contain parameters that need to be calibrated from measured data. The emergence of efficient Markov Chain Monte Carlo (MCMC) methods has made the Bayesian approach a standard tool in quantifying the uncertainty in the parameters. With MCMC, the parameter estimation problem can be solved in a fully statistical manner, and the whole distribution of the parameters can be explored, instead of obtaining point estimates and using, e.g., Gaussian approximations. In this thesis, MCMC methods are applied to parameter estimation problems in chemical reaction engineering, population ecology, and climate modeling. Motivated by the climate model experiments, the methods are developed further to make them more suitable for problems where the model is computationally intensive. After the parameters are estimated, one can start to use the model for various tasks. Two such tasks are studied in this thesis: optimal design of experiments, where the task is to design the next measurements so that the parameter uncertainty is minimized, and model-based optimization, where a model-based quantity, such as the product yield in a chemical reaction model, is optimized. In this thesis, novel ways to perform these tasks are developed, based on the output of MCMC parameter estimation. A separate topic is dynamical state estimation, where the task is to estimate the dynamically changing model state, instead of static parameters. For example, in numerical weather prediction, an estimate of the state of the atmosphere must constantly be updated based on the recently obtained measurements. In this thesis, a novel hybrid state estimation method is developed, which combines elements from deterministic and random sampling methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of precision agriculture and soil-landscape allows delimiting areas for localized management, allowing a localized application of agricultural inputs and thereby may contribute to preservation of natural resources. Therefore, the objective of this work was to characterize the spatial variability of chemical properties and clay content in the context of soil-landscape relationship in a Latosol (Oxisol) under cultivation of citrus. Soil samples were collected at a depth of 0.0-0.2 m in an area of 83.5 ha planted with citrus, as a 50-m intervals grid, with 129 points in concave terrain and 206 points in flat terrain, totaling 335 points. Values for the variables that express the chemical characteristics and clay content of soil properties were analyzed with descriptive statistics and geostatistical modeling of semivariograms for making maps of kriging. The values of range and kriging maps indicated higher variability in the shape of concave topography (top segment) compared with the shape of flat topography (slope and hillside segments below). The identification of different forms of terrain proved to be efficient in understanding the spatial variability of chemical properties and clay content of soil under cultivation of citrus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theoretical research of the study focused to business process management and business process modeling, the goal was to found a new business process modeling method for electrical accessories manufacturing enterprise. The focus was to find few options for business process modeling methods where company could have chosen the best one for its needs The study was carried out as a qualitative research with an action study and a case study as the most important ways collect data. In the empirical part of the study examples of company’s processes modeled with the new modeling method and process modeling process are presented. The new way of modeling processes improves especially visual presentation of the processes and improves the understanding how employees should work in the organizational interfaces of the process and in the interfaces between different processes. The results of the study is a new unified way to model company’s processes, which makes it easier to understand and create the process models. This improved readability makes it possible to reduce the costs that were created from the unclear old process models.