901 resultados para false positives
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade Gama, Programa de Pós-Graduação em Engenharia Biomédica, 2015.
Resumo:
With recent advances in remote sensing processing technology, it has become more feasible to begin analysis of the enormous historic archive of remotely sensed data. This historical data provides valuable information on a wide variety of topics which can influence the lives of millions of people if processed correctly and in a timely manner. One such field of benefit is that of landslide mapping and inventory. This data provides a historical reference to those who live near high risk areas so future disasters may be avoided. In order to properly map landslides remotely, an optimum method must first be determined. Historically, mapping has been attempted using pixel based methods such as unsupervised and supervised classification. These methods are limited by their ability to only characterize an image spectrally based on single pixel values. This creates a result prone to false positives and often without meaningful objects created. Recently, several reliable methods of Object Oriented Analysis (OOA) have been developed which utilize a full range of spectral, spatial, textural, and contextual parameters to delineate regions of interest. A comparison of these two methods on a historical dataset of the landslide affected city of San Juan La Laguna, Guatemala has proven the benefits of OOA methods over those of unsupervised classification. Overall accuracies of 96.5% and 94.3% and F-score of 84.3% and 77.9% were achieved for OOA and unsupervised classification methods respectively. The greater difference in F-score is a result of the low precision values of unsupervised classification caused by poor false positive removal, the greatest shortcoming of this method.
Resumo:
Pitch Estimation, also known as Fundamental Frequency (F0) estimation, has been a popular research topic for many years, and is still investigated nowadays. The goal of Pitch Estimation is to find the pitch or fundamental frequency of a digital recording of a speech or musical notes. It plays an important role, because it is the key to identify which notes are being played and at what time. Pitch Estimation of real instruments is a very hard task to address. Each instrument has its own physical characteristics, which reflects in different spectral characteristics. Furthermore, the recording conditions can vary from studio to studio and background noises must be considered. This dissertation presents a novel approach to the problem of Pitch Estimation, using Cartesian Genetic Programming (CGP).We take advantage of evolutionary algorithms, in particular CGP, to explore and evolve complex mathematical functions that act as classifiers. These classifiers are used to identify piano notes pitches in an audio signal. To help us with the codification of the problem, we built a highly flexible CGP Toolbox, generic enough to encode different kind of programs. The encoded evolutionary algorithm is the one known as 1 + , and we can choose the value for . The toolbox is very simple to use. Settings such as the mutation probability, number of runs and generations are configurable. The cartesian representation of CGP can take multiple forms and it is able to encode function parameters. It is prepared to handle with different type of fitness functions: minimization of f(x) and maximization of f(x) and has a useful system of callbacks. We trained 61 classifiers corresponding to 61 piano notes. A training set of audio signals was used for each of the classifiers: half were signals with the same pitch as the classifier (true positive signals) and the other half were signals with different pitches (true negative signals). F-measure was used for the fitness function. Signals with the same pitch of the classifier that were correctly identified by the classifier, count as a true positives. Signals with the same pitch of the classifier that were not correctly identified by the classifier, count as a false negatives. Signals with different pitch of the classifier that were not identified by the classifier, count as a true negatives. Signals with different pitch of the classifier that were identified by the classifier, count as a false positives. Our first approach was to evolve classifiers for identifying artifical signals, created by mathematical functions: sine, sawtooth and square waves. Our function set is basically composed by filtering operations on vectors and by arithmetic operations with constants and vectors. All the classifiers correctly identified true positive signals and did not identify true negative signals. We then moved to real audio recordings. For testing the classifiers, we picked different audio signals from the ones used during the training phase. For a first approach, the obtained results were very promising, but could be improved. We have made slight changes to our approach and the number of false positives reduced 33%, compared to the first approach. We then applied the evolved classifiers to polyphonic audio signals, and the results indicate that our approach is a good starting point for addressing the problem of Pitch Estimation.
Resumo:
Thesis (Ph.D, Computing) -- Queen's University, 2016-09-30 09:55:51.506
Resumo:
Neonatal seizures are common in the neonatal intensive care unit. Clinicians treat these seizures with several anti-epileptic drugs (AEDs) to reduce seizures in a neonate. Current AEDs exhibit sub-optimal efficacy and several randomized control trials (RCT) of novel AEDs are planned. The aim of this study was to measure the influence of trial design on the required sample size of a RCT. We used seizure time courses from 41 term neonates with hypoxic ischaemic encephalopathy to build seizure treatment trial simulations. We used five outcome measures, three AED protocols, eight treatment delays from seizure onset (Td) and four levels of trial AED efficacy to simulate different RCTs. We performed power calculations for each RCT design and analysed the resultant sample size. We also assessed the rate of false positives, or placebo effect, in typical uncontrolled studies. We found that the false positive rate ranged from 5 to 85% of patients depending on RCT design. For controlled trials, the choice of outcome measure had the largest effect on sample size with median differences of 30.7 fold (IQR: 13.7–40.0) across a range of AED protocols, Td and trial AED efficacy (p<0.001). RCTs that compared the trial AED with positive controls required sample sizes with a median fold increase of 3.2 (IQR: 1.9–11.9; p<0.001). Delays in AED administration from seizure onset also increased the required sample size 2.1 fold (IQR: 1.7–2.9; p<0.001). Subgroup analysis showed that RCTs in neonates treated with hypothermia required a median fold increase in sample size of 2.6 (IQR: 2.4–3.0) compared to trials in normothermic neonates (p<0.001). These results show that RCT design has a profound influence on the required sample size. Trials that use a control group, appropriate outcome measure, and control for differences in Td between groups in analysis will be valid and minimise sample size.
Resumo:
Neuroimaging research involves analyses of huge amounts of biological data that might or might not be related with cognition. This relationship is usually approached using univariate methods, and, therefore, correction methods are mandatory for reducing false positives. Nevertheless, the probability of false negatives is also increased. Multivariate frameworks have been proposed for helping to alleviate this balance. Here we apply multivariate distance matrix regression for the simultaneous analysis of biological and cognitive data, namely, structural connections among 82 brain regions and several latent factors estimating cognitive performance. We tested whether cognitive differences predict distances among individuals regarding their connectivity pattern. Beginning with 3,321 connections among regions, the 36 edges better predicted by the individuals' cognitive scores were selected. Cognitive scores were related to connectivity distances in both the full (3,321) and reduced (36) connectivity patterns. The selected edges connect regions distributed across the entire brain and the network defined by these edges supports high-order cognitive processes such as (a) (fluid) executive control, (b) (crystallized) recognition, learning, and language processing, and (c) visuospatial processing. This multivariate study suggests that one widespread, but limited number, of regions in the human brain, supports high-level cognitive ability differences. Hum Brain Mapp, 2016. © 2016 Wiley Periodicals, Inc.
Resumo:
RNA-Fluorescence In Situ Hybridization (RNA-FISH) enables to analyze and visualize the microorganisms of interest within microbial communities in their natural environments by fluorescent labelling of specific RNA sequences. Poor accessibility or low content of the RNA target region can cause false positives/negatives due to low fluorescence of the cells. To reduce the chances of this occurring, probe cocktails – i.e. mixture of several probes that hybridize to different regions of the target RNA- has been proposed as an alternative to single probes use for increasing the Fluorescence Intensities (FI). However, is this really a good solution? The key finding of this work was that the use of probe cocktails is not always a good solution for maximizing the FI as at high concentrations the single probe EUK516-6 FAM yielded higher FI than the probe cocktails.
Resumo:
The assertion on which this paper is based is that Capitalism has been superseded by Corporatism. I put forward an argument as to why Marxist scholars can and should abandon the idea that Capitalism still exists based on Marx’s approach to understanding political economy. Further, I argue that Marx’s method can be deployed to better understand and change the corporatist system in which we are currently living first by understanding what it means to be “labour” in a system governed by complex structures of debt.
Resumo:
This paper presents a preliminary flight test based detection range versus false alarm performance characterisation of a morphological-hidden Markov model filtering approach to vision-based airborne dim-target collision detection. On the basis of compelling in-flight collision scenario data, we calculate system operating characteristic (SOC) curves that concisely illustrate the detection range versus false alarm rate performance design trade-offs. These preliminary SOC curves provide a more complete dim-target detection performance description than previous studies (due to the experimental difficulties involved, previous studies have been limited to very short flight data sample sets and hence have not been able to quantify false alarm behaviour). The preliminary investigation here is based on data collected from 4 controlled collision encounters and supporting non-target flight data. This study suggests head-on detection ranges of approximately 2.22 km under blue sky background conditions (1.26 km in cluttered background conditions), whilst experiencing false alarms at a rate less than 1.7 false alarms/hour (ie. less than once every 36 minutes). Further data collection is currently in progress.
Resumo:
This paper presents a survey of previously presented vision based aircraft detection flight test, and then presents new flight test results examining the impact of camera field-of view choice on the detection range and false alarm rate characteristics of a vision-based aircraft detection technique. Using data collected from approaching aircraft, we examine the impact of camera fieldof-view choice and confirm that, when aiming for similar levels of detection confidence, an improvement in detection range can be obtained by choosing a smaller effective field-of-view (in terms of degrees per pixel).
Resumo:
While the engagement, success and retention of first year students are ongoing issues in higher education, they are currently of considerable and increasing importance as the pressures on teaching and learning from the new standards framework and performance funding intensifies. This Nuts & Bolts presentation introduces the concept of a maturity model and its application to the assessment of the capability of higher education institutions to address student engagement, success and retention. Participants will be provided with (a) a concise description of the concept and features of a maturity model; and (b) the opportunity to explore the potential application of maturity models (i) to the management of student engagement and retention programs and strategies within an institution and (ii) to the improvement of these features by benchmarking across the sector.
Resumo:
Acoustic recordings of the environment are an important aid to ecologists monitoring biodiversity and environmental health. However, rapid advances in recording technology, storage and computing make it possible to accumulate thousands of hours of recordings, of which, ecologists can only listen to a small fraction. The big-data challenge is to visualize the content of long-duration audio recordings on multiple scales, from hours, days, months to years. The visualization should facilitate navigation and yield ecologically meaningful information. Our approach is to extract (at one minute resolution) acoustic indices which reflect content of ecological interest. An acoustic index is a statistic that summarizes some aspect of the distribution of acoustic energy in a recording. We combine indices to produce false-colour images that reveal acoustic content and facilitate navigation through recordings that are months or even years in duration.
Resumo:
The low- and high-frequency components of a rustling sound, created when prey (freshly killed frog) was jerkily pulled on dry and wet sandy floors and asbestos, were recorded and played back to individual Indian false vampire bats (Megaderma lyra). Megaderma lyra responded with flight toward the speakers and captured dead frogs, that were kept as reward. The spectral peaks were at 8.6, 7.1 and 6.8 kHz for the low-frequency components of the sounds created at the dry, asbestos and wet floors, respectively. The spectral peaks for the high-frequency sounds created on the respective floors were at 36.8,27.2 and 23.3 kHz. The sound from the dry floor was more intense than that of from the other two substrata. Prey movements that generated sonic or ultrasonic sounds were both sufficient and necessary for the bats to detect and capture prey. The number of successful prey captures was significantly greater for the dry floor sound, especially to its high-frequency components. Bat-responses were low to the wet floor and moderate to the asbestos floor sounds. The bats did not respond to the sound of unrecorded parts of the tape. Even though the bats flew toward the speakers when the prey generated sounds were played back and captured the dead frogs we cannot rule out the possibility of M. lyra using echolocation to localize prey. However, the study indicates that prey that move on dry sandy floor are more vulnerable to predation by M. lyra.
Resumo:
Background: Changing perspectives on the natural history of celiac disease (CD), new serology and genetic tests, and amended histological criteria for diagnosis cast doubt on past prevalence estimates for CD. We set out to establish a more accurate prevalence estimate for CD using a novel serogenetic approach.Methods: The human leukocyte antigen (HLA)-DQ genotype was determined in 356 patients with 'biopsy-confirmed' CD, and in two age-stratified, randomly selected community cohorts of 1,390 women and 1,158 men. Sera were screened for CD-specific serology.Results: Only five 'biopsy-confirmed' patients with CD did not possess the susceptibility alleles HLA-DQ2.5, DQ8, or DQ2.2, and four of these were misdiagnoses. HLA-DQ2.5, DQ8, or DQ2.2 was present in 56% of all women and men in the community cohorts. Transglutaminase (TG)-2 IgA and composite TG2/deamidated gliadin peptide (DGP) IgA/IgG were abnormal in 4.6% and 5.6%, respectively, of the community women and 6.9% and 6.9%, respectively, of the community men, but in the screen-positive group, only 71% and 75%, respectively, of women and 65% and 63%, respectively, of men possessed HLA-DQ2.5, DQ8, or DQ2.2. Medical review was possible for 41% of seropositive women and 50% of seropositive men, and led to biopsy-confirmed CD in 10 women (0.7%) and 6 men (0.5%), but based on relative risk for HLA-DQ2.5, DQ8, or DQ2.2 in all TG2 IgA or TG2/DGP IgA/IgG screen-positive subjects, CD affected 1.3% or 1.9%, respectively, of females and 1.3% or 1.2%, respectively, of men. Serogenetic data from these community cohorts indicated that testing screen positives for HLA-DQ, or carrying out HLA-DQ and further serology, could have reduced unnecessary gastroscopies due to false-positive serology by at least 40% and by over 70%, respectively.Conclusions: Screening with TG2 IgA serology and requiring biopsy confirmation caused the community prevalence of CD to be substantially underestimated. Testing for HLA-DQ genes and confirmatory serology could reduce the numbers of unnecessary gastroscopies. © 2013 Anderson et al.; licensee BioMed Central Ltd.