631 resultados para algorithmic skeletons
Resumo:
Proving the unsatisfiability of propositional Boolean formulas has applications in a wide range of fields. Minimal Unsatisfiable Sets (MUS) are signatures of the property of unsatisfiability in formulas and our understanding of these signatures can be very helpful in answering various algorithmic and structural questions relating to unsatisfiability. In this paper, we explore some combinatorial properties of MUS and use them to devise a classification scheme for MUS. We also derive bounds on the sizes of MUS in Horn, 2-SAT and 3-SAT formulas.
Resumo:
ASICs offer the best realization of DSP algorithms in terms of performance, but the cost is prohibitive, especially when the volumes involved are low. However, if the architecture synthesis trajectory for such algorithms is such that the target architecture can be identified as an interconnection of elementary parameterized computational structures, then it is possible to attain a close match, both in terms of performance and power with respect to an ASIC, for any algorithmic parameters of the given algorithm. Such an architecture is weakly programmable (configurable) and can be viewed as an application specific instruction-set processor (ASIP). In this work, we present a methodology to synthesize ASIPs for DSP algorithms.
Resumo:
An energy-momentum conserving time integrator coupled with an automatic finite element algorithm is developed to study longitudinal wave propagation in hyperelastic layers. The Murnaghan strain energy function is used to model material nonlinearity and full geometric nonlinearity is considered. An automatic assembly algorithm using algorithmic differentiation is developed within a discrete Hamiltonian framework to directly formulate the finite element matrices without recourse to an explicit derivation of their algebraic form or the governing equations. The algorithm is illustrated with applications to longitudinal wave propagation in a thin hyperelastic layer modeled with a two-mode kinematic model. Solution obtained using a standard nonlinear finite element model with Newmark time stepping is provided for comparison. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Berge's elegant dipath partition conjecture from 1982 states that in a dipath partition P of the vertex set of a digraph minimizing , there exists a collection Ck of k disjoint independent sets, where each dipath P?P meets exactly min{|P|, k} of the independent sets in C. This conjecture extends Linial's conjecture, the GreeneKleitman Theorem and Dilworth's Theorem for all digraphs. The conjecture is known to be true for acyclic digraphs. For general digraphs, it is known for k=1 by the GallaiMilgram Theorem, for k?? (where ?is the number of vertices in the longest dipath in the graph), by the GallaiRoy Theorem, and when the optimal path partition P contains only dipaths P with |P|?k. Recently, it was proved (Eur J Combin (2007)) for k=2. There was no proof that covers all the known cases of Berge's conjecture. In this article, we give an algorithmic proof of a stronger version of the conjecture for acyclic digraphs, using network flows, which covers all the known cases, except the case k=2, and the new, unknown case, of k=?-1 for all digraphs. So far, there has been no proof that unified all these cases. This proof gives hope for finding a proof for all k.
Resumo:
Structural Support Vector Machines (SSVMs) have become a popular tool in machine learning for predicting structured objects like parse trees, Part-of-Speech (POS) label sequences and image segments. Various efficient algorithmic techniques have been proposed for training SSVMs for large datasets. The typical SSVM formulation contains a regularizer term and a composite loss term. The loss term is usually composed of the Linear Maximum Error (LME) associated with the training examples. Other alternatives for the loss term are yet to be explored for SSVMs. We formulate a new SSVM with Linear Summed Error (LSE) loss term and propose efficient algorithms to train the new SSVM formulation using primal cutting-plane method and sequential dual coordinate descent method. Numerical experiments on benchmark datasets demonstrate that the sequential dual coordinate descent method is faster than the cutting-plane method and reaches the steady-state generalization performance faster. It is thus a useful alternative for training SSVMs when linear summed error is used.
Resumo:
High-level loop transformations are a key instrument in mapping computational kernels to effectively exploit the resources in modern processor architectures. Nevertheless, selecting required compositions of loop transformations to achieve this remains a significantly challenging task; current compilers may be off by orders of magnitude in performance compared to hand-optimized programs. To address this fundamental challenge, we first present a convex characterization of all distinct, semantics-preserving, multidimensional affine transformations. We then bring together algebraic, algorithmic, and performance analysis results to design a tractable optimization algorithm over this highly expressive space. Our framework has been implemented and validated experimentally on a representative set of benchmarks running on state-of-the-art multi-core platforms.
Resumo:
Recently it has been discovered---contrary to expectations of physicists as well as biologists---that the energy transport during photosynthesis, from the chlorophyll pigment that captures the photon to the reaction centre where glucose is synthesised from carbon dioxide and water, is highly coherent even at ambient temperature and in the cellular environment. This process and the key molecular ingredients that it depends on are described. By looking at the process from the computer science view-point, we can study what has been optimised and how. A spatial search algorithmic model based on robust features of wave dynamics is presented.
Resumo:
We develop several novel signal detection algorithms for two-dimensional intersymbol-interference channels. The contribution of the paper is two-fold: (1) We extend the one-dimensional maximum a-posteriori (MAP) detection algorithm to operate over multiple rows and columns in an iterative manner. We study the performance vs. complexity trade-offs for various algorithmic options ranging from single row/column non-iterative detection to a multi-row/column iterative scheme and analyze the performance of the algorithm. (2) We develop a self-iterating 2-D linear minimum mean-squared based equalizer by extending the 1-D linear equalizer framework, and present an analysis of the algorithm. The iterative multi-row/column detector and the self-iterating equalizer are further connected together within a turbo framework. We analyze the combined 2-D iterative equalization and detection engine through analysis and simulations. The performance of the overall equalizer and detector is near MAP estimate with tractable complexity, and beats the Marrow Wolf detector by about at least 0.8 dB over certain 2-D ISI channels. The coded performance indicates about 8 dB of significant SNR gain over the uncoded 2-D equalizer-detector system.
Resumo:
We consider the problem of devising incentive strategies for viral marketing of a product. In particular, we assume that the seller can influence penetration of the product by offering two incentive programs: a) direct incentives to potential buyers (influence) and b) referral rewards for customers who influence potential buyers to make the purchase (exploit connections). The problem is to determine the optimal timing of these programs over a finite time horizon. In contrast to algorithmic perspective popular in the literature, we take a mean-field approach and formulate the problem as a continuous-time deterministic optimal control problem. We show that the optimal strategy for the seller has a simple structure and can take both forms, namely, influence-and-exploit and exploit-and-influence. We also show that in some cases it may optimal for the seller to deploy incentive programs mostly for low degree nodes. We support our theoretical results through numerical studies and provide practical insights by analyzing various scenarios.
Resumo:
The Lovasz θ function of a graph, is a fundamental tool in combinatorial optimization and approximation algorithms. Computing θ involves solving a SDP and is extremely expensive even for moderately sized graphs. In this paper we establish that the Lovasz θ function is equivalent to a kernel learning problem related to one class SVM. This interesting connection opens up many opportunities bridging graph theoretic algorithms and machine learning. We show that there exist graphs, which we call SVM−θ graphs, on which the Lovasz θ function can be approximated well by a one-class SVM. This leads to a novel use of SVM techniques to solve algorithmic problems in large graphs e.g. identifying a planted clique of size Θ(n√) in a random graph G(n,12). A classic approach for this problem involves computing the θ function, however it is not scalable due to SDP computation. We show that the random graph with a planted clique is an example of SVM−θ graph, and as a consequence a SVM based approach easily identifies the clique in large graphs and is competitive with the state-of-the-art. Further, we introduce the notion of a ''common orthogonal labeling'' which extends the notion of a ''orthogonal labelling of a single graph (used in defining the θ function) to multiple graphs. The problem of finding the optimal common orthogonal labelling is cast as a Multiple Kernel Learning problem and is used to identify a large common dense region in multiple graphs. The proposed algorithm achieves an order of magnitude scalability compared to the state of the art.
Resumo:
The problem of bipartite ranking, where instances are labeled positive or negative and the goal is to learn a scoring function that minimizes the probability of mis-ranking a pair of positive and negative instances (or equivalently, that maximizes the area under the ROC curve), has been widely studied in recent years. A dominant theoretical and algorithmic framework for the problem has been to reduce bipartite ranking to pairwise classification; in particular, it is well known that the bipartite ranking regret can be formulated as a pairwise classification regret, which in turn can be upper bounded using usual regret bounds for classification problems. Recently, Kotlowski et al. (2011) showed regret bounds for bipartite ranking in terms of the regret associated with balanced versions of the standard (non-pairwise) logistic and exponential losses. In this paper, we show that such (non-pairwise) surrogate regret bounds for bipartite ranking can be obtained in terms of a broad class of proper (composite) losses that we term as strongly proper. Our proof technique is much simpler than that of Kotlowski et al. (2011), and relies on properties of proper (composite) losses as elucidated recently by Reid and Williamson (2010, 2011) and others. Our result yields explicit surrogate bounds (with no hidden balancing terms) in terms of a variety of strongly proper losses, including for example logistic, exponential, squared and squared hinge losses as special cases. An important consequence is that standard algorithms minimizing a (non-pairwise) strongly proper loss, such as logistic regression and boosting algorithms (assuming a universal function class and appropriate regularization), are in fact consistent for bipartite ranking; moreover, our results allow us to quantify the bipartite ranking regret in terms of the corresponding surrogate regret. We also obtain tighter surrogate bounds under certain low-noise conditions via a recent result of Clemencon and Robbiano (2011).
Resumo:
We propose an algorithmic technique for accelerating maximum likelihood (ML) algorithm for image reconstruction in fluorescence microscopy. This is made possible by integrating Biggs-Andrews (BA) method with ML approach. The results on widefield, confocal, and super-resolution 4Pi microscopy reveal substantial improvement in the speed of 3D image reconstruction (the number of iterations has reduced by approximately one-half). Moreover, the quality of reconstruction obtained using accelerated ML closely resembles with nonaccelerated ML method. The proposed technique is a step closer to realize real-time reconstruction in 3D fluorescence microscopy. Microsc. Res. Tech. 78:331-335, 2015. (c) 2015 Wiley Periodicals, Inc.
Resumo:
Monte Carlo simulation methods involving splitting of Markov chains have been used in evaluation of multi-fold integrals in different application areas. We examine in this paper the performance of these methods in the context of evaluation of reliability integrals from the point of view of characterizing the sampling fluctuations. The methods discussed include the Au-Beck subset simulation, Holmes-Diaconis-Ross method, and generalized splitting algorithm. A few improvisations based on first order reliability method are suggested to select algorithmic parameters of the latter two methods. The bias and sampling variance of the alternative estimators are discussed. Also, an approximation to the sampling distribution of some of these estimators is obtained. Illustrative examples involving component and series system reliability analyses are presented with a view to bring out the relative merits of alternative methods. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Retransmission protocols such as HDLC and TCP are designed to ensure reliable communication over noisy channels (i.e., channels that can corrupt messages). Thakkar et al. 15] have recently presented an algorithmic verification technique for deterministic streaming string transducer (DSST) models of such protocols. The verification problem is posed as equivalence checking between the specification and protocol DSSTs. In this paper, we argue that more general models need to be obtained using non-deterministic streaming string transducers (NSSTs). However, equivalence checking is undecidable for NSSTs. We present two classes where the models belong to a sub-class of NSSTs for which it is decidable. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The 3-Hitting Set problem involves a family of subsets F of size at most three over an universe U. The goal is to find a subset of U of the smallest possible size that intersects every set in F. The version of the problem with parity constraints asks for a subset S of size at most k that, in addition to being a hitting set, also satisfies certain parity constraints on the sizes of the intersections of S with each set in the family F. In particular, an odd (even) set is a hitting set that hits every set at either one or three (two) elements, and a perfect code is a hitting set that intersects every set at exactly one element. These questions are of fundamental interest in many contexts for general set systems. Just as for Hitting Set, we find these questions to be interesting for the case of families consisting of sets of size at most three. In this work, we initiate an algorithmic study of these problems in this special case, focusing on a parameterized analysis. We show, for each problem, efficient fixed-parameter tractable algorithms using search trees that are tailor-made to the constraints in question, and also polynomial kernels using sunflower-like arguments in a manner that accounts for equivalence under the additional parity constraints.