907 resultados para Water treatment plants - Design and construction
Resumo:
In this paper, we have reported a facile method for the synthesis of ordered magnetic core-manganese oxide shell nanostructures. The process included two steps. First, manganese ferrite nanoparticles were obtained through a solvothermal method. Then, the manganese ferrite nanoparticles were mixed directly with KMnO4 solution without any additional modified procedures of the magnetic cores. It has been found that Mn element in the core can react with KMnO4 to form manganese oxide which acts as a seed for the in-situ growth of manganese oxide shells. This is significant for the controllable fabrication of symmetrical ordered manganese oxide shell structures. The shell thickness can be easily controlled through the reaction time. Transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and energy-dispersive X-ray spectroscopy have been employed to characterize the products at different reaction time.
Resumo:
Measurement of iron and manganese is very important in evaluating the quality of natural waters. We have constructed an automated Fe(II), total dissolved iron(TDI), Mn(II), and total dissolved manganese(TDM) analysis system for the quality control of underground drinking water by reverse flow injection analysis and chemiluminescence detection(rFIA-CL), The method is based on the measurement of the metal-catalyzed light emission from luminol oxidation by potassium periodate. The typical signal is a narrow peak, in which the height is proportional to light emitted and hence to the concentration of metal ions. The detection limits were 3 x 10(-6) mu g ml(-1) for Fe(II) and the linear range extents up to 1.0 x 10(-4) and 5 x 10(-6) mu g ml(-1) for Mn(II) cover a linear range to 1.0 x 10(-4) mu g ml(-1). This method was used for automated in-situ monitoring of total dissolved iron and total dissolved in underground water during water treatment. (C) 1997 Elsevier Science B.V.
Resumo:
The paper deals with use of a food grade coagulant (guar gum) as a replacement for synthetic coagulants for potable water treatment.
Resumo:
Constructed wetland systems (CWS) have been used as a low cost bio-filtration system to treat farm wastewater. While studies have shown that CWS are efficient in removing organic compounds and pathogens, there is limited data on the presence of hormones in this type of treatment system. The objective of this study was to evaluate the ability of the CWS to reduce estrogenic and androgenic hormone concentration in dairy wastewater. This was achieved through a year long study on dairy wastewater samples obtained froma surface flow CWS. Analysis of hormonal levels was performed using a solid phase extraction (SPE) sample clean-up method, combined with reporter gene assays (RGAs) which incorporate relevant receptors capable of measuring total estrogenic or androgenic concentrations as low as 0.24 ng L1 and 6.9 ng L1 respectively. Monthly analysis showed a mean removal efficiency for estrogens of 95.2%, corresponding to an average residual concentration of 3.2 ng L1 17b-estradiol equivalent (EEQ), below the proposed lowest observable effect concentration (LOEC) of 10 ng L1. However, for one month a peak EEQ concentration of 115 ng L1 was only reduced to 18.8 ng L1. The mean androgenic activity peaked at 360 ng L1 and a removal efficiency of 92.1% left an average residual concentration of 32.3 ng L1 testosterone equivalent (TEQ). The results obtained demonstrate that this type of CWS is an efficient system for the treatment of hormones in dairy wastewater. However, additional design improvements may be required to further enhance removal efficiency of peak hormone concentrations.
Resumo:
Generally, the solid and liquid fractions (digestate) from Anaerobic Digestion (AD) energy production are considered as waste. This has a negative impact on the sustainability of AD processes because of the financial outlay required to treat digestate before being discharged into municipal water treatment plants or natural water bodies. The main aim of this research was to investigate feasibility of producing an organic fertiliser using anaerobic digestate and limestone powders as the raw materials employing a high shear granulation process. Two-level factorial experimental design was used to determine the influence of granulation process variables on, the strength, resistance to attrition and yield of the granules. It was concluded from the study that it is technically feasible to produce organic fertiliser granules of acceptable strength and product yield. Increasing the liquid-to-solid ratio during granulation leads to increased granule strength and better product yield. Although the strength of the granules produced was lower than typical strength of commercial synthetic fertiliser granules (about 5 to 7. MPa), this could be improved by mixing the digestate with a polymeric binder or coating the particles post granulation. © 2012 Elsevier B.V.
Resumo:
Elevated intraocular pressure (IOP) is a major risk factor for the deterioration of open-angle glaucoma (OAG); medical IOP reduction is the standard treatment, yet no randomized placebo-controlled study of medical IOP reduction has been undertaken previously. The United Kingdom Glaucoma Treatment Study (UKGTS) tests the hypothesis that treatment with a topical prostaglandin analog, compared with placebo, reduces the frequency of visual field (VF) deterioration events in OAG patients by 50% over a 2-year period.
Resumo:
The in-line measurement of COD and NH4-N in the WWTP inflow is crucial for the timely monitoring of biological wastewater treatment processes and for the development of advanced control strategies for optimized WWTP operation. As a direct measurement of COD and NH4-N requires expensive and high maintenance in-line probes or analyzers, an approach estimating COD and NH4-N based on standard and spectroscopic in-line inflow measurement systems using Machine Learning Techniques is presented in this paper. The results show that COD estimation using Radom Forest Regression with a normalized MSE of 0.3, which is sufficiently accurate for practical applications, can be achieved using only standard in-line measurements. In the case of NH4-N, a good estimation using Partial Least Squares Regression with a normalized MSE of 0.16 is only possible based on a combination of standard and spectroscopic in-line measurements. Furthermore, the comparison of regression and classification methods shows that both methods perform equally well in most cases.