786 resultados para Video cameras
Resumo:
This paper looks at the accuracy of using the built-in camera of smart phones and free software as an economical way to quantify and analyse light exposure by producing luminance maps from High Dynamic Range (HDR) images. HDR images were captured with an Apple iPhone 4S to capture a wide variation of luminance within an indoor and outdoor scene. The HDR images were then processed using Photosphere software (Ward, 2010.) to produce luminance maps, where individual pixel values were compared with calibrated luminance meter readings. This comparison has shown an average luminance error of ~8% between the HDR image pixel values and luminance meter readings, when the range of luminances in the image is limited to approximately 1,500cd/m2.
Resumo:
This study used a video-based hazard perception dual task to compare the hazard perception skills of young drivers with middle aged, more experienced drivers and to determine if these skills can be improved with video-based road commentary training. The primary task required the participants to detect and verbally identify immediate hazard on video-based traffic scenarios while concurrently performing a secondary tracking task, simulating the steering of real driving. The results showed that the young drivers perceived fewer immediate hazards (mean = 75.2%, n = 24, 19 females) than the more experienced drivers (mean = 87.5%, n = 8, all females), and had longer hazard perception times, but performed better in the secondary tracking task. After the road commentary training, the mean percentage of hazards detected and identified by the young drivers improved to the level of the experienced drivers and was significantly higher than that of an age and driving experience matched control group. The results will be discussed in the context of psychological theories of hazard perception and in relation to road commentary as an evidence-based training intervention that seems to improve many aspects of unsafe driving behaviour in young drivers.
Resumo:
This research has been conducted to ascertain whether people with certain personality types exhibit preferences for particular game genres. Four hundred and sixty-six participants completed an online survey in which they described their preference for various game genres and provided measures of personality. Personality types were measured using the five-factor model of personality. Significant relationships between personality types and game genres were found. The results are interpreted in the context of the features of particular game genres and possible matches between personality traits and these features.
Resumo:
This study explored relationships between personality, video game preference and gaming experiences. Two hundred and thirty-five participants completed an online survey in which they recalled a recent gaming experience, and provided measures of personality and their gaming experience via the Player Experience of Need Satisfaction (PENS) measure. Relationships between game genre, personality and gaming experience were found. Results are interpreted with reference to the validity of the PENS, current models of video gaming motivations and enjoyment, and sub-groups of people that may be more vulnerable to possible negative effects of games.
Resumo:
This paper addresses the problem of automatically estimating the relative pose between a push-broom LIDAR and a camera without the need for artificial calibration targets or other human intervention. Further we do not require the sensors to have an overlapping field of view, it is enough that they observe the same scene but at different times from a moving platform. Matching between sensor modalities is achieved without feature extraction. We present results from field trials which suggest that this new approach achieves an extrinsic calibration accuracy of millimeters in translation and deci-degrees in rotation.
Resumo:
In this paper we demonstrate passive vision-based localization in environments more than two orders of magnitude darker than the current benchmark using a 100 webcam and a 500 camera. Our approach uses the camera’s maximum exposure duration and sensor gain to achieve appropriately exposed images even in unlit night-time environments, albeit with extreme levels of motion blur. Using the SeqSLAM algorithm, we first evaluate the effect of variable motion blur caused by simulated exposures of 132 ms to 10000 ms duration on localization performance. We then use actual long exposure camera datasets to demonstrate day-night localization in two different environments. Finally we perform a statistical analysis that compares the baseline performance of matching unprocessed greyscale images to using patch normalization and local neighbourhood normalization – the two key SeqSLAM components. Our results and analysis show for the first time why the SeqSLAM algorithm is effective, and demonstrate the potential for cheap camera-based localization systems that function across extreme perceptual change.
Resumo:
Media and Information Literacy is the focus of several teaching and research projects at Queensland University of Technology and there is particular emphasis placed on digital technologies and how they are used for communication, information use and learning in formal contexts such as schools. Research projects are currently taking place in several locations where investigators are collecting data on approaches to the use of digital media tools like cameras and editing systems, tablet computers and video games. This complements QUT’s teacher preparation courses, including preparation to implement UNESCO’s Online Course in Media and Information Literacy and Intercultural Dialogue in 2013. This work takes place in the context of projects occurring at the National level in Australia that continue to promote Media and Information Literacy.
Resumo:
Video presented as part of the USECA 2011 workshop at WISE 2011. Real-time sales assistant service is a problematic component of remote delivery of sales support for customers. Solutions involving web pages, telephony and video support prove problematic when seeking to remotely guide customers in their sales processes, especially with transactions revolving around physically complex artefacts. This process involves a number of services that are often complex in nature, ranging from physical compatibility and configuration factors, to availability and credit services. We propose the application of a combination of virtual worlds and augmented reality to create synthetic environments suitable for remote sales of physical artefacts, right in the home of the purchaser. A high level description of the service structure involved is shown, along with a use case involving the sale of electronic goods and services within an example augmented reality application. We expect this work to have application in many sales domains involving physical objects needing to be sold over the Internet.
Resumo:
This study presents a segmentation pipeline that fuses colour and depth information to automatically separate objects of interest in video sequences captured from a quadcopter. Many approaches assume that cameras are static with known position, a condition which cannot be preserved in most outdoor robotic applications. In this study, the authors compute depth information and camera positions from a monocular video sequence using structure from motion and use this information as an additional cue to colour for accurate segmentation. The authors model the problem similarly to standard segmentation routines as a Markov random field and perform the segmentation using graph cuts optimisation. Manual intervention is minimised and is only required to determine pixel seeds in the first frame which are then automatically reprojected into the remaining frames of the sequence. The authors also describe an automated method to adjust the relative weights for colour and depth according to their discriminative properties in each frame. Experimental results are presented for two video sequences captured using a quadcopter. The quality of the segmentation is compared to a ground truth and other state-of-the-art methods with consistently accurate results.
Resumo:
This paper describes the work being conducted in the baseline rail level crossing project, supported by the Australian rail industry and the Cooperative Research Centre for Rail Innovation. The paper discusses the limitations of near-miss data for analysis obtained using current level crossing occurrence reporting practices. The project is addressing these limitations through the development of a data collection and analysis system with an underlying level crossing accident causation model. An overview of the methodology and improved data recording process are described. The paper concludes with a brief discussion of benefits this project is expected to provide the Australian rail industry.
Resumo:
Collisions between pedestrians and vehicles continue to be a major problem throughout the world. Pedestrians trying to cross roads and railway tracks without any caution are often highly susceptible to collisions with vehicles and trains. Continuous financial, human and other losses have prompted transport related organizations to come up with various solutions addressing this issue. However, the quest for new and significant improvements in this area is still ongoing. This work addresses this issue by building a general framework using computer vision techniques to automatically monitor pedestrian movements in such high-risk areas to enable better analysis of activity, and the creation of future alerting strategies. As a result of rapid development in the electronics and semi-conductor industry there is extensive deployment of CCTV cameras in public places to capture video footage. This footage can then be used to analyse crowd activities in those particular places. This work seeks to identify the abnormal behaviour of individuals in video footage. In this work we propose using a Semi-2D Hidden Markov Model (HMM), Full-2D HMM and Spatial HMM to model the normal activities of people. The outliers of the model (i.e. those observations with insufficient likelihood) are identified as abnormal activities. Location features, flow features and optical flow textures are used as the features for the model. The proposed approaches are evaluated using the publicly available UCSD datasets, and we demonstrate improved performance using a Semi-2D Hidden Markov Model compared to other state of the art methods. Further we illustrate how our proposed methods can be applied to detect anomalous events at rail level crossings.
Resumo:
This paper examines the use of short video tutorials in a post-graduate accounting subject, as a means of helping students transition from dependent to more independent learners. Five short (three to five minute) video tutorials were introduced in an effort to shift the reliance for learning from the lecturer to the student. Students’ usage of video tutorials, comments by students, and reliance on teaching staff for individual assistance were monitored over three semesters from 2008 to 2009. Interviews with students were then conducted in late 2009 to more comprehensively evaluate the use and benefits of video tutorials. Findings reveal preliminary but positive outcomes in terms of both more efficient teaching and more effective learning.
Resumo:
Mobile video, as an emerging market and a promising research field, has attracted much attention from both industry and researchers. Considering the quality of user-experience as the crux of mobile video services, this chapter aims to provide a guide to user-centered studies of mobile video quality. This will benefit future research in better understanding user needs and experiences, designing effective research, and providing solid solutions to improve the quality of mobile video. This chapter is organized in three main parts: (1) a review of recent user studies from the perspectives of research focuses, user study methods, and data analysis methods; (2) an example of conducting a user study of mobile video research, together with the discussion on a series of relative issues, such as participants, materials and devices, study procedure, and analysis results, and; (3) a conclusion with an open discussion about challenges and opportunities in mobile video related research, and associated potential future improvements.
Resumo:
The aim of this project was to gain the voice of the early adolescent (aged between 11 and 13 years) about the things that are genuinely important to them in their lives. Eight participants were asked to record a private video diary entry each night for one week. A number of thematic topics were identified including: their experiences and perspectives on school curriculum and assessment, opinions about schooling structures, and importance of friendship and family. Giving young adolescents the opportunity to voice their opinions has been valuable in gaining insight to the relative impacts of teaching and learning approaches in their school contexts and the issues they consider as the most important in their lives.
Resumo:
The balance between player competence and the challenge presented by a task has been acknowledged as a major factor in providing optimal experience in video games. While Dynamic Difficulty Adjustment (DDA) presents methods for adjusting difficulty in real-time during singleplayer games, little research has explored its application in competitive multiplayer games where challenge is dictated by the competence of human opponents. By conducting a formal review of 180 existing competitive multiplayer games, it was found that a large number of modern games are utilizing DDA techniques to balance challenge between human opponents. From this data, we propose a preliminary framework for classifying Multiplayer Dynamic Difficulty Adjustment (mDDA) instances.