726 resultados para Steel castings
Resumo:
Tutkimus on luonteeltaan laadullinen ja sen tavoitteena on tarkastella johtoryhmätyöskentelyä ja päätöksentekoa roolien ja vuorovaikutuksen kautta. Roolit perustuvat havainnointitutkimukselle Imatra Steelin Imatran terästehtaan johtoryhmässä. Tutkimuksessa on lisäksi hyödynnetty teemahaastatteluja ja yrityksen dokumentteja, ja näin ollen aineistotriangulaatiota. Tutkimuksen painotus on empiirisellä osalla. Tutkimuksen avulla todetaan, että johtoryhmätyöskentely kohdeyrityksessä on perinteitä noudattelevaa ja keskittynyt informaation jakamiseen sekä toiminnan koordinointiin. Strateginen päätöksenteko ja dynaaminen johtoryhmätyöskentely ovat vähemmän painottuneita. Päätökset johtoryhmän kokouksissa syntyvät keskustelujen tuloksena puheenjohtajan tehdessä lopullisen ratkaisun.
Resumo:
Fatal and permanently disabling accidents form only one per I cent of all occupational accidents but in many branches of industry they account for more than half the accident costs. Furthermore the human suffering of the victim and his family is greater in severe accidents than in slight ones. For both human and economic reasons the severe accident risks should be identified befor injuries occur. It is for this purpose that different safety analysis methods have been developed . This study shows two new possible approaches to the problem.. The first is the hypothesis that it is possible to estimate the potential severity of accidents independent of the actual severity. The second is the hypothesis that when workers are also asked to report near accidents, they are particularly prone to report potentially severe near accidents on the basis of their own subjective risk assessment. A field study was carried out in a steel factory. The results supported both the hypotheses. The reliability and the validity of post incident estimates of an accident's potential severity were reasonable. About 10 % of accidents were estimated to be potentially critical; they could have led to death or very severe permanent disability. Reported near accidents were significantly more severe, about 60 $ of them were estimated to be critical. Furthermore the validity of workers subjective risk assessment, manifested in the near accident reports, proved to be reasonable. The studied new methods require further development and testing. They could be used both in routine usage in work places and in research for identifying and setting the priorities of accident risks.
Resumo:
The study of price risk management concerning high grade steel alloys and their components was conducted. This study was focused in metal commodities, of which nickel, chrome and molybdenum were in a central role. Also possible hedging instruments and strategies for referred metals were studied. In the literature part main themes are price formation of Ni, Cr and Mo, the functioning of metal exchanges and main hedging instruments for metal commodities. This section also covers how micro and macro variables may affect metal prices from the viewpoint of short as well as longer time period. The experimental part consists of three sections. In the first part, multiple regression model with seven explanatory variables was constructed to describe price behavior of nickel. Results were compared after this with information created with comparable simple regression model. Additionally, long time mean price reversion of nickel was studied. In the second part, theoretical price of CF8M alloy was studied by using nickel, ferro-chrome and ferro-molybdenum as explanatory variables. In the last section, cross hedging possibilities for illiquid FeCr -metal was studied with five LME futures. Also this section covers new information concerning possible forthcoming molybdenum future contracts as well. The results of this study confirm, that linear regression models which are based on the assumption of market rationality, are not able to reliably describe price development of metals at issue. Models fulfilling assumptions for linear regression may though include useful information of statistical significant variables which have effect on metal prices. According to the experimental part, short futures were found to incorporate the most accurate information concerning the price movements in the future. However, not even 3M futures were able to predict turning point in the market before the faced slump. Cross hedging seemed to be very doubtful risk management strategy for illiquid metals, because correlations coefficients were found to be very sensitive for the chosen time span.
Resumo:
In recent times of global turmoil, the need for uncertainty management has become ever momentous. The need for enhanced foresight especially concerns capital-intensive industries, which need to commit their resources and assets with long-term planning horizons. Scenario planning has been acknowledged to have many virtues - and limitations - concerning the mapping of the future and illustrating the alternative development paths. The present study has been initiated to address both the need of improved foresight in two capital-intensive industries, i.e. the paper and steel industries and the imperfections in the current scenario practice. The research problem has been approached by engendering a problem-solving vehicle, which combines, e.g. elements of generic scenario process, face-to-face group support methods, deductive scenario reasoning and causal mapping into a fully integrated scenario process. The process, called the SAGES scenario framework, has been empirically tested by creating alternative futures for two capital-intensive industries, i.e. the paper and steel industries. Three scenarios for each industry have been engendered together with the identification of the key megatrends, the most important foreign investment determinants, key future drivers and leading indicators for the materialisation of the scenarios. The empirical results revealed a two-fold outlook for the paper industry, while the steel industry future was seen as much more positive. The research found support for utilising group support systems in scenario and strategic planning context with some limitations. Key perceived benefits include high time-efficiency, productivity and lower resource-intensiveness. Group support also seems to enhance participant satisfaction, encourage innovative thinking and provide the users with personalised qualitative scenarios.
Resumo:
The influence of chloride deposition rate on concrete using an atmospheric corrosion approach is rarely studied in the literature. Seven exposure sites were selected in Havana City, Cuba, for exposure of reinforced concrete samples. Two significantly different atmospheric corrosivity levels with respect to corrosion of steel reinforced concrete were observed after two years of exposure depending on atmospheric chloride deposition and w/c ratio of the concrete. Changes in corrosion current are related to changes in chloride penetration and chloride atmospheric deposition. The influence of sulphur compound deposition could also be a parameter to consider in atmospheric corrosion of steel reinforced concrete.
Resumo:
The inhibition of the corrosion of mild steel in 2M hydrochloric acid solutions by Pyridoxol hydrochloride (PXO) has been studied using weight loss and hydrogen evolution techniques. The inhibitor (PXO) exhibited highest inhibition efficiency of 71.93% at the highest inhibitor concentration of 1.0 x 10-2M investigated and a temperature of 303K from weight loss result. Also, inhibition was found to increase with increasing concentration of the inhibitor and decreasing temperature. A first order type of mechanism has been deduced from the kinetic treatment of the weight loss results and the process of inhibition attributed to physical adsorption. The results obtained from the two techniques show that pyridoxol hydrochloride could serve as an effective inhibitor of the corrosion of mild steel in HCl acid solution. The compound obeys the Langmuir adsorption isotherm equation.
Resumo:
Cutting of thick section stainless steel and mild steel, and medium section aluminium using the high power ytterbium fibre laser has been experimentally investigated in this study. Theoretical models of the laser power requirement for cutting of a metal workpiece and the melt removal rate were also developed. The calculated laser power requirement was correlated to the laser power used for the cutting of 10 mm stainless steel workpiece and 15 mm mild steel workpiece using the ytterbium fibre laser and the CO2 laser. Nitrogen assist gas was used for cutting of stainless steel and oxygen was used for mild steel cutting. It was found that the incident laser power required for cutting at a given cutting speed was lower for fibre laser cutting than for CO2 laser cutting indicating a higher absorptivity of the fibre laser beam by the workpiece and higher melting efficiency for the fibre laser beam than for the CO2 laser beam. The difficulty in achieving an efficient melt removal during high speed cutting of the 15 mmmild steel workpiece with oxygen assist gas using the ytterbium fibre laser can be attributed to the high melting efficiency of the ytterbium fibre laser. The calculated melt flow velocity and melt film thickness correlated well with the location of the boundary layer separation point on the 10 mm stainless steel cut edges. An increase in the melt film thickness caused by deceleration of the melt particles in the boundary layer by the viscous shear forces results in the flow separation. The melt flow velocity increases with an increase in assist gas pressure and cut kerf width resulting in a reduction in the melt film thickness and the boundary layer separation point moves closer to the bottom cut edge. The cut edge quality was examined by visual inspection of the cut samples and measurement of the cut kerf width, boundary layer separation point, cut edge squareness (perpendicularity) deviation, and cut edge surface roughness as output quality factors. Different regions of cut edge quality in 10 mm stainless steel and 4 mm aluminium workpieces were defined for different combinations of cutting speed and laserpower.Optimization of processing parameters for a high cut edge quality in 10 mmstainless steel was demonstrated
Resumo:
The aim of the study was to create an easily upgradable product costing model for laser welded hollow core steel panels to help in pricing decisions. The theory section includes a literature review to identify traditional and modern cost accounting methodologies, which are used by manufacturing companies. The theory section also presents the basics of steel panel structures and their manufacturing methods and manufacturing costs based on previous research. Activity-Based costing turned out to be the most appropriate methodology for the costing model because of wide product variations. Activity analysis and the determination of cost drivers based on observations and interviews were the key steps in the creation of the model. The created model was used to test how panel parameters affect the costs caused by the main manufacturing stages and materials. By comparing cost structures, it was possible to find the panel types that are the most economic and uneconomic to manufacture. A sensitivity analysis proved that the model gives sufficiently reliable cost information to support pricing decisions. More reliable cost information could be achieved by determining the cost drivers more accurately. Alternative methods for manufacturing the cores were compared with the model. The comparison proved that roll forming can be more advantageous and flexible than press brake bending. However, more extensive research showed that roll forming is possible only when the cores are designed to be manufactured by roll forming. Due to that fact, when new panels are designed consideration should be given to the possibility of using roll forming.
Resumo:
The purpose of this thesis is to examine the level of customer consciousness of the production process employees in a steel factory and to investigate the methods of internal marketing in order to propose development practices to enhance the customer consciousness of the case company employees. The significance of the level of customer consciousness is discussed and practices already implemented affecting the level of customer consciousness in the company are examined. The literature review gives an insight to the role of customer consciousness in the CRM philosophy of a manufacturing company and examines the means of internal marketing in enhancing customer consciousness. In the empirical part of the study, the level and significance of customer consciousness is determined by conducting individual and focus group interviews. The interviews are also used to examine the practices that could function in enhancing the customer consciousness of the employees. Development suggestions to improve the level of customer consciousness in the production process are given based on the results. The level of customer consciousness is at a poor level in the production process and influences above all on work motivation and job satisfaction, but possibly on customer satisfaction as well. The enhancement of customer consciousness in the production process should be done e.g. by ensuring the distribution of right knowledge coherently to all of the employees, gathering large customer reference database to exploit in work and in training, using visual illustration in presenting the customer information, training proactively and letting the employees to participate in the customer oriented development activities. Customer satisfaction focused reward system can be considered.
Resumo:
This study investigated the surface hardening of steels via experimental tests using a multi-kilowatt fiber laser as the laser source. The influence of laser power and laser power density on the hardening effect was investigated. The microhardness analysis of various laser hardened steels was done. A thermodynamic model was developed to evaluate the thermal process of the surface treatment of a wide thin steel plate with a Gaussian laser beam. The effect of laser linear oscillation hardening (LLOS) of steel was examined. An as-rolled ferritic-pearlitic steel and a tempered martensitic steel with 0.37 wt% C content were hardened under various laser power levels and laser power densities. The optimum power density that produced the maximum hardness was found to be dependent on the laser power. The effect of laser power density on the produced hardness was revealed. The surface hardness, hardened depth and required laser power density were compared between the samples. Fiber laser was briefly compared with high power diode laser in hardening medium-carbon steel. Microhardness (HV0.01) test was done on seven different laser hardened steels, including rolled steel, quenched and tempered steel, soft annealed alloyed steel and conventionally through-hardened steel consisting of different carbon and alloy contents. The surface hardness and hardened depth were compared among the samples. The effect of grain size on surface hardness of ferritic-pearlitic steel and pearlitic-cementite steel was evaluated. In-grain indentation was done to measure the hardness of pearlitic and cementite structures. The macrohardness of the base material was found to be related to the microhardness of the softer phase structure. The measured microhardness values were compared with the conventional macrohardness (HV5) results. A thermodynamic model was developed to calculate the temperature cycle, Ac1 and Ac3 boundaries, homogenization time and cooling rate. The equations were numerically solved with an error of less than 10-8. The temperature distributions for various thicknesses were compared under different laser traverse speed. The lag of the was verified by experiments done on six different steels. The calculated thermal cycle and hardened depth were compared with measured data. Correction coefficients were applied to the model for AISI 4340 steel. AISI 4340 steel was hardened by laser linear oscillation hardening (LLOS). Equations were derived to calculate the overlapped width of adjacent tracks and the number of overlapped scans in the center of the scanned track. The effect of oscillation frequency on the hardened depth was investigated by microscopic evaluation and hardness measurement. The homogeneity of hardness and hardened depth with different processing parameters were investigated. The hardness profiles were compared with the results obtained with conventional single-track hardening. LLOS was proved to be well suitable for surface hardening in a relatively large rectangular area with considerable depth of hardening. Compared with conventional single-track scanning, LLOS produced notably smaller hardened depths while at 40 and 100 Hz LLOS resulted in higher hardness within a depth of about 0.6 mm.
Resumo:
Tutkimuksen tavoitteena on selvittää tarkoituksenmukaisin etabloitumismenetelmä teräsyhtiön kansainvälistymisessä Pietarin markkinoille. Vaikka kansainvälistymistä onkin tutkittu paljon, kyseisen kontekstin erityispiirteisiin on aiemmissa tutkimuksissa kiinnitetty vain vähän huomiota. Kansainvälistymisteorioista työhön valittiin John Dunningin eklektinen paradigma sekä Uppsala-malli. Etabloitumismenetelmän valintaa puolestaan tarkastellaan eri vaihtoehtojen kautta, jotka kattavat viennin, suorat ulkomaan investoinnit, sopimusjärjestelyt sekä yhteisyrityksen. Valintaa selitetään taustalla vaikuttavien tekijöiden sekä kansainvälistymisprosessin kautta. Kohteena olevan markkina-alueen potentiaalin, ongelmien sekä yrityksen kilpailuetujen arvioinnin jälkeen ehdotetaan optimaalista ratkaisua. Omat haasteensa operaatiomuodon valintaan luovat potentiaalinen mutta haastava kohdemarkkina-alue sekä yrityksen sisäiset tekijät. Kontekstiin parhaiten sopivaksi etabloitumismenetelmäksi esitetään aloittamista välittömällä viennillä asiakkaiden etsimiseksi ja suhteiden luomiseksi. Kun asiakkuuksia alueella on riittävästi, myyntikonttorin perustaminen Pietarin lähelle nähdään tarkoituksenmukaisena paikallisen läsnäolon lisäämiseksi. Empiirinen data kattaa kahdeksan asiantuntijahaastattelua, jotka yhdessä muun lähdeaineiston kanssa rakentavat perustan empiirisille tuloksille. Tutkimuksen tulokset tarjoavat yritykselle perustellun ratkaisuehdotuksen siitä, kuinka Pietarin markkinoille tulisi etabloitua.
Resumo:
The aim of the present paper is to study the relationship between the fracture modes in hydrogen-assisted cracking (HAC) in microalloied steel and the emission of acoustic signals during the fracturing process. For this reason, a flux-cored arc weld (FCAW) was used in a high-strength low-alloy steel. The consumable used were the commercially available AWS E120T5-K4 and had a diameter of 1.6 mm. Two different shielding gases were used (CO2 and CO2+5% H2) to obtain complete phenomenon characterization. The implant test was applied with three levels of restriction stresses. An acoustic emission measurement system (AEMS) was coupled to the implant test apparatus. The output signal from the acoustic emission sensor was passed through an electronic amplifier and processed by a root mean square (RMS) voltage converter. Fracture surfaces were examined by scanning electron microscopy (SEM) and image analysis. Fracture modes were related with the intensity, the energy and the number of the peaks of the acoustic emission signal. The shielding gas CO2+5% H2 proved to be very useful in the experiments. Basically, three different fracture modes were identified in terms of fracture appearance: microvoid coalescence (MVC), intergranular (IG) and quasi-cleavage (QC). The results show that each mode of fracture presents a characteristic acoustic signal.
Resumo:
Crack formation and growth in steel bridge structural elements may be due to loading oscillations. The welded elements are liable to internal discontinuities along welded joints and sensible to stress variations. The evaluation of the remaining life of a bridge is needed to make cost-effective decisions regarding inspection, repair, rehabilitation, and replacement. A steel beam model has been proposed to simulate crack openings due to cyclic loads. Two possible alternatives have been considered to model crack propagation, which the initial phase is based on the linear fracture mechanics. Then, the model is extended to take into account the elastoplastic fracture mechanic concepts. The natural frequency changes are directly related to moment of inertia variation and consequently to a reduction in the flexural stiffness of a steel beam. Thus, it is possible to adopt a nondestructive technique during steel bridge inspection to quantify the structure eigenvalue variation that will be used to localize the grown fracture. A damage detection algorithm is developed for the proposed model and the numerical results are compared with the solutions achieved by using another well know computer code.
Resumo:
Growing demand for stainless steel construction materials has increased the popularity of substitutive materials for austenitic stainless steels. The lean duplex grades have taken their place in building of structures exposed to corrosive environments. Since the duplex grades are relatively new materials, the current codes and norms do not fully cover the newest duplex grades. The joints tested in this thesis were designed and studied according to Eurocode 3, even though all the materials are not yet accepted to the standards. The main objective in this thesis was to determine the differences of the used materials in behaviour under loading at low temperatures. Tests in which the deformation and strength properties of the joints were determined were done at the temperature of -46°C, which is the requirement of temperature for structures designed according to Norsok standards. Results show that replacing the austenitic grade with the lean duplex grade is acceptable.