1000 resultados para Previsão de safra
Resumo:
O presente documento procura analisar e desenvolver um modelo de previsão de demanda de crédito imobiliário residencial para o mercado brasileiro. Serão examinados: a relação do crédito e os fatores macroeconômicos, a evolução do crédito no Brasil, o crédito imobiliário no contexto do crédito brasileiro e o déficit habitacional no mercado. Em seguida identificaremos os indicadores macroeconômicos que melhor explicam a demanda de crédito imobiliário através de modelos estatísticos de regressão. Finalmente testaremos modelos e definiremos o que melhor se aplica à estimativa de previsão de demanda de crédito imobiliário para o mercado brasileiro.
Resumo:
O objetivo desse trabalho é avaliar a capacidade de previsão do mercado sobre a volatilidade futura a partir das informações obtidas nas opções de Petrobras e Vale, além de fazer uma comparação com modelos do tipo GARCH e EWMA. Estudos semelhantes foram realizados no mercado de ações americano: Seja com uma cesta de ações selecionadas ou com relação ao índice S&P 100, as conclusões foram diversas. Se Canina e Figlewski (1993) a “volatilidade implícita tem virtualmente nenhuma correlação com a volatilidade futura”, Christensen e Prabhala (1998) concluem que a volatilidade implícita é um bom preditor da volatilidade futura. No mercado brasileiro, Andrade e Tabak (2001) utilizam opções de dólar para estudar o conteúdo da informação no mercado de opções. Além disso, comparam o poder de previsão da volatilidade implícita com modelos de média móvel e do tipo GARCH. Os autores concluem que a volatilidade implícita é um estimador viesado da volatilidade futura mas de desempenho superior se comparada com modelos estatísticos. Gabe e Portugal (2003) comparam a volatilidade implícita das opções de Telemar (TNLP4) com modelos estatísticos do tipo GARCH. Nesse caso, volatilidade implícita tambem é um estimador viesado, mas os modelos estatísticos além de serem bons preditores, não apresentaram viés. Os dados desse trabalho foram obtidos ao longo de 2008 e início de 2009, optando-se por observações intradiárias das volatilidades implícitas das opções “no dinheiro” de Petrobrás e Vale dos dois primeiros vencimentos. A volatidade implícita observada no mercado para ambos os ativos contém informação relevante sobre a volatilidade futura, mas da mesma forma que em estudos anteriores, mostou-se viesada. No caso específico de Petrobrás, o modelo GARCH se mostrou um previsor eficiente da volatilidade futura
Resumo:
Uma das maiores dificuldades encontradas pelos técnicos envolvidos na elaboração da previsão do tempo é a falta de integração entre o software de visualização usado por eles e os programas usados para escrever os boletins. Os previsores necessitam de um meio rápido e fácil de gerar previsões com outras formas de apresentação, além do formato de texto em que ela normalmente é produzida. A partir do estudo dessas dificuldades, formulou-se a hipótese de que seria benéfico criar uma linguagem visual para a criação da previsão do tempo, que permitisse gerar tanto o texto de um boletim meteorológico quanto as imagens correspondentes. Este trabalho descreve a especificação dessa linguagem, à qual se deu o nome de Pythonissa. Ela foi definida usando o formalismo de grafos e se constitui de um modelo da estrutura de um boletim de previsão do tempo. Em Pythonissa, cada região geográfica para a qual é feita a previsão é representada por um vértice em um grafo. Os fenômenos presentes na região também são representados por vértices, de outros tipos, ligados à região por arestas que denotam sua presença. Cada tipo de vértice e aresta tem mapeamentos para representações gráficas e para elementos de controle em uma interface com o usuário. A partir da linguagem, foi implementado um protótipo preliminar, no qual é possível criar um boletim de por meio de uma interface visual e gerar o texto e a imagem correspondentes. Foi dado início, também, à construção de um framework para integração da linguagem a um ambiente de visualização de dados, de modo a produzir uma aplicação utilizável em um ambiente de trabalho real. Para isto foram usados o software de visualização Vis5D e a linguagem de scripts Python. A este framework, se deu o nome de Py5D.
Resumo:
Redes Bayesianas podem ser ferramentas poderosas para construção de modelos econômico-financeiros utilizados para auxílio à tomada de decisão em situações que envolvam grau elevado de incerteza. Relações não-lineares entre variáveis não são capturadas em modelos econométricos lineares. Especialmente em momentos de crise ou de ruptura, relações lineares, em geral, não mais representam boa aproximação da realidade, contribuindo para aumentar a distância entre os modelos teóricos de previsão e dados reais. Neste trabalho, é apresentada uma metodologia para levantamento de dados e aplicação de Redes Bayesianas na obtenção de modelos de crescimento de fluxos de caixa de empresas brasileiras. Os resultados são comparados a modelos econométricos de regressão múltipla e finalmente comparados aos dados reais observados no período. O trabalho é concluído avaliando-se as vantagens de desvantagens da utilização das Redes de Bayes para esta aplicação.
Resumo:
Resumo O objetivo deste trabalho é explorar a utilização de Redes Neurais no processo de previsão da Captação Líquida do Mercado de Previdência Privada Brasileiro como ferramenta à tomada de decisão e apoio na gestão das empresas do setor. Para a construção desse modelo foram utilizadas Redes Neurais, ferramenta que vem se mostrando adequada para utilização em modelos não lineares com resultados superiores a outras técnicas. A fonte de dados principal para a realização deste trabalho foi a FENAPREVI – Federação Nacional de Previdência Privada e Vida. Para comparação com o modelo de Redes Neurais, foi utilizado um modelo de Regressão Linear Múltipla como benchmark, com o objetivo de evidenciar a adequação da ferramenta em vista dos objetivos traçados no trabalho. O modelo foi construído a partir das informações mensais do setor, entre maio de 2002 e agosto de 2009, considerando o que se convencionou chamar de ‘mercado vivo’, que abrange os produtos PGBL e VGBL, comercializados ininterruptamente nesse período pelas chamadas EAPP – Entidades Abertas de Prividência Privada. Os resultados obtidos demonstraram a adequação da ferramenta Redes Neurais, que obtiveram resultados superiores aos obtidos utilizando Regressão Linear Múltipla.
Resumo:
No Brasil, o regime de metas para inflação foi instituído em julho de 1999, pelo Banco Central do Brasil, sendo o principal objetivo ancorar as expectativas de mercado. Este regime levou a uma queda da inflação e também a uma convergência das expectativas. Quando comparadas com a inflação ocorrida, as expectativas do mercado melhoraram nos últimos anos, porém, continuam com um erro ainda expressivo para o prazo de 6 meses. Em linhas gerais, a contribuição desta dissertação é de mostrar que existem modelos simples que conseguem prever o comportamento da inflação em médio prazo (6 meses). Um modelo ARIMA do IPCA obtém projeções acumuladas de inflação melhores que as projeções do mercado.
Resumo:
O objetivo dessa dissertação é analisar as variáveis importantes da inflação para a decisão de política econômica do Banco Central. Considerando a importância de reações forward looking das autoridades monetárias num regime de metas de inflação, estudam-se alguns modelos de projeção de inflação de curto prazo para verificar qual modelo possui maior capacidade de previsão. Com o objetivo de entender a dinâmica inflacionária brasileira ao longo desses anos desde a implementação do sistema de metas de inflação, procura-se analisar a dinâmica da inércia inflacionária e do repasse cambial.
Resumo:
A formulação de planejamentos e o direcionamento estratégico das empresas dependem da identificação e a previsão correta das mudanças emergentes no ambiente de negócios, o que torna a previsão de demanda um elemento chave na tomada de decisão gerencial. Um dos maiores problemas associados com o uso de previsões de demanda no apoio à tomada de decisões é a escolha do método de previsão a ser implementado. Organizações com necessidades e características distintas em relação aos seus produtos e serviços atuam em diferentes cenários de mercado. Diferentes cenários necessitam de diferentes métodos de previsão, de forma a refletir mudanças na estrutura do mercado (como entrada de novos produtos, novos competidores e/ou mudanças no comportamento dos consumidores). Assim, uma metodologia que direcione diferentes métodos de previsão de demanda para as situações em que são mais eficientes pode auxiliar o processo preditivo e de tomada de decisões das organizações, minimizando erros de planejamentos estratégico, tático e operacional. Esta dissertação apresenta uma metodologia de seleção de métodos de previsão de demanda mais apropriados para diferentes situações. Métodos de integração de métodos qualitativos e quantitativos de previsão melhoram a acurácia nos processo preditivos e também são abordados na metodologia de seleção de métodos de previsão. A metodologia proposta é ilustrada através de dois estudos de caso. No primeiro estudo investigou-se o caso de um produto com demanda regular. No segundo estudo, detalhou-se o processo de previsão para um cenário de lançamento de um novo produto.
Resumo:
O presente estudo apresenta um modelo de previsão do preço e do volume comercializado no mercado transoceânico de minério de ferro. Para tanto, foi desenvolvido um modelo VAR, utilizando, além das variáveis endógenas com um lag de diferença, o preço do petróleo Brent e um índice de produção industrial. Após testar raiz unitária das variáveis e constatar que nenhuma era estacionária, o teste de cointegração atestou que existia relação de longo prazo entre as mesmas que era estacionária, afastando a possibilidade de uma regressão espúria. Como resultado, a modelagem VAR apresentou um modelo consistente, com elevada aderência para a previsão do preço e do volume negociado de minério de ferro no mercado transoceânico, não obstante ele tenha apresentado alguma imprecisão no curto prazo.
Análise da perenidade do modelo de Wibe para previsão de demanda para papel para imprimir e escrever
Resumo:
A indústria de papel e celulose no mundo e no Brasil é de notável importância pela geração de empregos, faturamento e peso estratégico. Sendo uma indústria de base florestal tem sua cadeia produtiva verticalizada dependente de um longo ciclo de plantio, crescimento e colheita florestal que pode, nas melhores das condições, tomar de cinco a sete anos e, para casos mais extremos, demandar de 20 a 40 anos. O intenso capital empregado aliado à baixa mobilidade de curso faz da previsão de demanda para a indústria papeleira um ponto de extrema atenção. Esta pesquisa se propõe a estudar se um modelo proposto na década de 80, aplicado a dados da década de 70, se mantém válido até os dias atuais. Para tal, este trabalho levanta breve bibliografia relacionada aos conceitos de previsão de demanda e como a previsão de demanda foi aplicada para produtos de base florestal – dentre os quais, papel e celulose. O estudo segue com a escolha do modelo de Wibe (1984), sua reprodução e extrapolação para dados da década de 60, 70, 80 e 90. A função de demanda originalmente proposta por Wibe (1984) associa o cunsumo de papel à renda, preço e a um índice de substituição. Para teste de sua perenidade este trabalho mede a acurácia do modelo original para cada década e testa variações e simplificações de tal modelo.
Resumo:
Esta dissertação tem três objetivos. O primeiro é encontrar o melhor método para se calcular a taxa ótima de “hedge” no mercado brasileiro do boi gordo. Para isso, foram testados cinco modelos: BEKK, DCC de Tse e Tsui (2002), DCC de Engle e Sheppard (2001), BEKK com dummy de safra e BEKK com dummy de entressafra. O segundo é calcular o diferencial de razões de “hedge” entre a safra e entressafra, pois a taxa de “hedge” na entressafra deve ser maior devido a uma maior incerteza sobre um possível choque de oferta, o que afetaria negativamente os custos dos frigoríficos. O terceiro e último objetivo é desvendar o porquê da literatura brasileira de taxa ótima de “hedge” estar encontrando estimativas muito pequenas das taxas quando comparadas às realizadas no mercado. Conclui-se que os modelos DCC’s são os que, no geral, obtém um desempenho melhor pelo critério de redução de variância e aumento do índice de Sharpe e que a taxa de “hedge” na entressafra não deve ser maior que na safra. Nota-se também que a quebra da expectativa intertemporal com a mudança de contratos faz com que a variância da série dos retornos futuros aumente muito, diminuindo assim a taxa de “hedge”.
Resumo:
Usando dados intradiários dos ativos mais negociados do Bovespa, este trabalho considerou dois modelos recentemente desenvolvidos na literatura de estimação e previsão de volatilidade realizada. São eles; Heterogeneous Autorregresive Model of Realized Volatility (HAR-RV), desenvolvido por Corsi (2009)e o Mixed Data Sampling (MIDAS-RV) desenvolvido por Ghysels et. al (2004). Através de medidas de comparação de previsão dentro e fora da amostra, constatou-se resultados superiores do modelo MIDAS-RV apenas para previsões dentro da amostra. Para previsões fora da amostra, no entanto, não houve diferença estatisticamente significativa entre os modelos. Também encontram-se evidências que a utilização da volatilidade realizada induz distribuições dos retornos padronizados mais próximas da normal.
Resumo:
O Brasil é o segundo produtor mundial de soja [Glycine max (L.) Merr.] e o sétimo de óleo vegetal. A produção brasileira desta oleaginosa alcançou 61 milhões de toneladas na safra 2007/08 e projeta-se, para 2020, produção de 105 milhões de toneladas. O consumo de biodiesel em 2008 representou um milhão de toneladas e a demanda por este biocombustível deverá atingir 3,1 milhões de toneladas em 2020. Para atender esta demanda haverá ampliação da área plantada principalmente na região Centro-Oeste, mas também exigirá esforços no aumento de produtividade. Visando melhor conhecimento das inferências das variáveis climáticas temperatura e radiação global sobre o desenvolvimento da soja e sua produtividade de grãos e óleo, foi proposto um modelo estocástico com distribuição normal truncada para os dados de temperatura máxima, mínima e média. Também foi incluído neste modelo distribuição triangular assimétrica para determinação da produtividade de óleo mais provável. Foram estipuladas oito datas de semeadura para a localidade de Piracicaba/SP onde está localizada a estação meteorológica da ESALQ/USP, fornecedora dos dados climáticos utilizados neste estudo. Conclui-se que: (i) ao longo das datas de semeadura houve redução do ciclo com o aumento da temperatura média; (ii) a redução do ciclo da cultura de soja interferiu nas produtividades de grãos e de óleo; (iii) a radiação global média nos trinta dias após a antese refletiram-se na partição de fotoassimilados e na produtividade de grãos e óleo; (iv) os modelos estocásticos podem ser utilizados para a previsão das produtividades de soja e óleo.
Resumo:
A previsão de demanda é uma atividade relevante pois influencia na tomada de decisão das organizações públicas e privadas. Este trabalho procura identificar modelos econométricos que apresentem bom poder preditivo para a demanda automotiva brasileira num horizonte de longo prazo, cinco anos, através do uso das séries de vendas mensais de automóveis, veículos comerciais leves e total, o período amostral é de 1970 a 2010. Foram estimados e avaliados os seguintes modelos: Auto-regressivo (Box-Jenkins, 1976), Estrutural (Harvey, 1989) e Mudança de Regime (Hamilton, 1994), incluindo efeitos calendário e dummies além dos testes de raízes unitárias sazonais e não-sazonais para as séries. A definição da acurácia dos modelos baseou-se no Erro Quadrático Médio (EQM) dos resultados apresentados na simulação da previsão de demanda dos últimos quinze anos (1995 a 2010).
Resumo:
Este trabalho estuda a previsão da taxa de juros com foco em uma estratégia de investimento. Inicialmente é feita a parametrização da taxa de juros com o modelo de Vasicek para posterior aplicação do modelo autorregressivo tanto na taxa de juros quanto nos parâmetros do Vasicek. O instrumento financeiro escolhido para verificar a eficácia da metodologia proposta foi o constant matutity swap aplicado em alguns vértices. Os resultados variaram significativamente para os diferentes horizontes de calibragem e períodos de amostragem sem um padrão de desempenho.