991 resultados para Ortopedic prototype
Resumo:
In the context of this work we evaluated a multisensory, noninvasive prototype platform for shake flask cultivations by monitoring three basic parameters (pH, pO2 and biomass). The focus lies on the evaluation of the biomass sensor based on backward light scattering. The application spectrum was expanded to four new organisms in addition to E. coli K12 and S. cerevisiae [1]. It could be shown that the sensor is appropriate for a wide range of standard microorganisms, e.g., L. zeae, K. pastoris, A. niger and CHO-K1. The biomass sensor signal could successfully be correlated and calibrated with well-known measurement methods like OD600, cell dry weight (CDW) and cell concentration. Logarithmic and Bleasdale-Nelder derived functions were adequate for data fitting. Measurements at low cell concentrations proved to be critical in terms of a high signal to noise ratio, but the integration of a custom made light shade in the shake flask improved these measurements significantly. This sensor based measurement method has a high potential to initiate a new generation of online bioprocess monitoring. Metabolic studies will particularly benefit from the multisensory data acquisition. The sensor is already used in labscale experiments for shake flask cultivations.
Resumo:
Within the supply chain, the customer does not simply buy parts or services from suppliers, but also buys supplier capabilities, which results in quality products and services. Having a tool that handles the Inspection as well as the Nonconformance, Complaint, Corrective Action and Concession processes is key to successfully track the supplier performance. Taking as a case study a Supplier Quality Management (SQM) currently in operation in an Original Equipment Manufacturer (OEM) for automotive industry, this paper presents a platform to support a Supplier Quality Management System (SQMS), that fits the technical specification ISO/TS 16949 requirements. This prototype is composed by a web platform and a mobile App, having flexibility and mobility as key main characteristics.
Resumo:
During the lifetime of a research project, different partners develop several research prototype tools that share many common aspects. This is equally true for researchers as individuals and as groups: during a period of time they often develop several related tools to pursue a specific research line. Making research prototype tools easily accessible to the community is of utmost importance to promote the corresponding research, get feedback, and increase the tools’ lifetime beyond the duration of a specific project. One way to achieve this is to build graphical user interfaces (GUIs) that facilitate trying tools; in particular, with web-interfaces one avoids the overhead of downloading and installing the tools. Building GUIs from scratch is a tedious task, in particular for web-interfaces, and thus it typically gets low priority when developing a research prototype. Often we opt for copying the GUI of one tool and modifying it to fit the needs of a new related tool. Apart from code duplication, these tools will “live” separately, even though we might benefit from having them all in a common environment since they are related. This work aims at simplifying the process of building GUIs for research prototypes tools. In particular, we present EasyInterface, a toolkit that is based on novel methodology that provides an easy way to make research prototype tools available via common different environments such as a web-interface, within Eclipse, etc. It includes a novel text-based output language that allows to present results graphically without requiring any knowledge in GUI/Web programming. For example, an output of a tool could be (a structured version of) “highlight line number 10 of file ex.c” and “when the user clicks on line 10, open a dialog box with the text ...”. The environment will interpret this output and converts it to corresponding visual e_ects. The advantage of using this approach is that it will be interpreted equally by all environments of EasyInterface, e.g., the web-interface, the Eclipse plugin, etc. EasyInterface has been developed in the context of the Envisage [5] project, and has been evaluated on tools developed in this project, which include static analyzers, test-case generators, compilers, simulators, etc. EasyInterface is open source and available at GitHub2.
Resumo:
Tesi hau Solarus AB enpresaren konzentratzailedun eguzki kolektore fotovoltaiko termikoei (C-PVT) buruz doa eta bi helburu nagusi ditu. Lehena Solarus-eko oraingo diseinuaren alderaketak diseinatzea da, MaReCo (Maximum Reflector Collector) diseinuaren eta parabola puruaren alderaketa batzuekin batera. Diseinu hauetan eguzki zelulen ebaketa berriak daude barruan eta 4 busbar-eko eguzki zeluletan oinarritua dago. Honi esker analisi sakon bat egin ahalko da hargailu eta estruktura diseinuak konparatuz. Bigarren helburua Solarus AB-k Gävleko unibertsitatean (HiG) kokaturik dituen kolektoreen errendimendu elektriko eta termikoa aztertzean datza. Datuak simulazio eta software espezifikoen bidez lortu dira eta ondoren Microsoft Excel®-en aztertu. Bi proiektu txikiagoak egin dira ere enpresan, bata eguzki kolektore fotovoltaiko termikoen merkatuaren ikerketan datza eta bestea eguzki kolektoreen produkzio prozesuaren gida batean. Hargailuen eta estrukturaren diseinu berriak preparatuta utzi dira prototipoen hurreneko eraikuntzarako eta proiektuarekin jarraitzeko etorkizuneko lan bat planeatu da. Unibertsitateko instalakuntzaren analisiari dagokionez, errendimendu elektriko eta termikoa estimatuena baino nabarmenki txikiagoak izan dira.
Resumo:
Selling devices on retail stores comes with the big challenge of grabbing the customer’s attention. Nowadays people have a lot of offers at their disposal and new marketing techniques must emerge to differentiate the products. When it comes to smartphones and tablets, those devices can make the difference by themselves, if we use their computing power and capabilities to create something unique and interactive. With that in mind, three prototypes were developed during an internship: a face recognition based Customer Detection, a face tracking solution with an Avatar and interactive cross-app Guides. All three revealed to have potential to be differentiating solutions in a retail store, not only raising the chance of a customer taking notice of the device but also of interacting with them to learn more about their features. The results were meant to be only proof of concepts and therefore were not tested in the real world.
Resumo:
This paper presents the conception of an original superconducting Frictionless Zero Field Cooling bearing virtual prototype. In previous work also shown in this conference, a viability study of a Zero Field Cooling-superconducting bearing concept was conducted. It showed that the virtual prototype is feasible. Moreover, the simulation studies showed that a Zero Field Cooling superconducting track provides not only effective lateral stability but also higher levitation forces than the commonly used Field Cooling tracks. In this paper the new Zero Field Cooling -bearing virtual prototype is modeled in 3D. The virtual prototype was designed having in mind: i) a future implementation in high density polyurethane, for low temperature robustness; ii) future manufacturing in a three axes CNC milling machine and; iii) future implementation of some parts using an additive manufacturing technique.
Resumo:
The project aims to experiment the Cone Beam Breast Computed Tomography technique using a standard digital mammography system. The work is focused on the definition of a protocol of quality measurements for the pre-clinical evaluation of the machine. The paper is developed in two parts. The first is specifically concerned with the methods used to define the image quality and dosimetry aspects specific for digital mammography devices. A complete characterization of the system has been performed according to the applicable IEC standards to assure the performances of the equipment and define the quality levels. Due to the lack of a quality control protocol dedicated to CBBCT mammography scanner, a new equivalent test procedure has been proposed. The second part of the paper is focused on the evaluation, through quantitative and visual analyzes, of the CBCT exam feasibility in the hardware and software conditions currently proposed by IMS Giotto. The prototype was in fact developed differing from the technical choices of competing companies and developed for a different intended use. The main difference with respect to the existing breast CT scanners is the possibility of performing on the same system the CBBCT scanning but also all the mammographic techniques. In this thesis, we aim to assess whether, in the current setup, considering a dosimetric range very close to that used in the clinic, the tests produce results that can be considered acceptable or at least indicative of the feasibility of the entire project from a commercial point of view. For this purpose, the final reconstruction images, obtained by two previously developed software, are analyzed.
Resumo:
L'Electron-Ion Collider è un futuro acceleratore di particelle che approfondirà la nostra conoscenza riguardo l'interazione forte tramite la collisione di elettroni con nuclei e protoni. Uno dei progetti attualmente considerati per la costruzione del rivelatore, il dual-radiator RICH, prevede l'impiego di due radiatori Cherenkov, sui quali verranno montati dei fotorivelatori per rilevare l'emissione della luce Cherenkov e risalire alla massa delle particelle. L'opzione di base per questi rivelatori sono i sensori al silicio SiPM. Questo lavoro di tesi si basa sullo studio delle prestazioni di un prototipo per l'acquisizione dei dati rilevati dai SiPM che sfrutta l'effetto termoelettrico per raffreddare la zona in cui sono situati i sensori. L'analisi dei dati acquisiti ha portato alla conclusione che le prestazioni del prototipo sono confrontabili con quelle misurate all'interno di una camera climatica quando si trovano alla stessa temperatura.
Resumo:
Planning is an important sub-field of artificial intelligence (AI) focusing on letting intelligent agents deliberate on the most adequate course of action to attain their goals. Thanks to the recent boost in the number of critical domains and systems which exploit planning for their internal procedures, there is an increasing need for planning systems to become more transparent and trustworthy. Along this line, planning systems are now required to produce not only plans but also explanations about those plans, or the way they were attained. To address this issue, a new research area is emerging in the AI panorama: eXplainable AI (XAI), within which explainable planning (XAIP) is a pivotal sub-field. As a recent domain, XAIP is far from mature. No consensus has been reached in the literature about what explanations are, how they should be computed, and what they should explain in the first place. Furthermore, existing contributions are mostly theoretical, and software implementations are rarely more than preliminary. To overcome such issues, in this thesis we design an explainable planning framework bridging the gap between theoretical contributions from literature and software implementations. More precisely, taking inspiration from the state of the art, we develop a formal model for XAIP, and the software tool enabling its practical exploitation. Accordingly, the contribution of this thesis is four-folded. First, we review the state of the art of XAIP, supplying an outline of its most significant contributions from the literature. We then generalise the aforementioned contributions into a unified model for XAIP, aimed at supporting model-based contrastive explanations. Next, we design and implement an algorithm-agnostic library for XAIP based on our model. Finally, we validate our library from a technological perspective, via an extensive testing suite. Furthermore, we assess its performance and usability through a set of benchmarks and end-to-end examples.
Resumo:
The IoT is growing more and more each year and is becoming so ubiquitous that it includes heterogeneous devices with different hardware and software constraints leading to an highly fragmented ecosystem. Devices are using different protocols with different paradigms and they are not compatible with each other; some devices use request-response protocols like HTTP or CoAP while others use publish-subscribe protocols like MQTT. Integration in IoT is still an open research topic. When handling and testing IoT sensors there are some common task that people may be interested in: reading and visualizing the current value of the sensor; doing some aggregations on a set of values in order to compute statistical features; saving the history of the data to a time-series database; forecasting the future values to react in advance to a future condition; bridging the protocol of the sensor in order to integrate the device with other tools. In this work we will show the working implementation of a low-code and flow-based tool prototype which supports the common operations mentioned above, based on Node-RED and Python. Since this system is just a prototype, it has some issues and limitations that will be discussed in this work.
Resumo:
Base cutting and feeding into harvesters of plants lying close to the ground surface require an efficient sweeping action of the cutting mechanism. It is not the case of conventional sugarcane harvesters which have rigid blades mounted on discs capable to contaminate the cane with dirt as well as damage the ratoons. The objective of this work was to simulate the sweeping performance of a segmented base cutter. The model was developed using the laws of dynamic. Simulation included two rotational speeds (400 and 600 rpm), two cutting heights (0.12 and 0.13 m) and two disk tilting angles (-10º and -12º). The simulated sweeping angle varied between 56º and 193º, which are very promising as a mean to cutting and feeding cane sticks lying on the ground. Cutting height was the variable that affected sweeping action the most. This behavior indicates the need to have an automatic control of the cutting disk height in order to keep good sweeping performance as the harvester moves forward.
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
OBJETIVO: o propósito do presente estudo é avaliar o limite de resistência à flexão de um protótipo de mini-implante desenvolvido para ancoragem do aparelho de Herbst. MÉTODOS: após a realização de um cálculo do tamanho da amostra, quatro corpos de prova contendo os protótipos de mini-implantes foram submetidos a uma força de flexão por engastamento simples, utilizando-se uma máquina universal de ensaios mecânicos, sendo calculado o limite de resistência à força de flexão. RESULTADOS: após os ensaios mecânicos, os novos mini-implantes apresentaram o limite de resistência à força de flexão de 98,2kgf, que foi o menor valor encontrado. CONCLUSÃO: os protótipos de mini-implantes desenvolvidos para ancoragem do aparelho de Herbst foram capazes de suportar forças de flexão maiores do que as forças de mordida descritas na literatura.
Resumo:
Este trabalho apresenta um estudo da influência de diferentes materiais de cobertura no conforto térmico de instalações destinadas à criação de frangos de corte. A pesquisa foi desenvolvida no Câmpus Experimental da UNESP de Dracena - SP. Quatro protótipos em escala real foram construídos, com área de 28 m² cada, cobertos com telha reciclada à base de embalagens longa vida, telha cerâmica, telha cerâmica pintada de branco e telha de fibrocimento. Os dados foram coletados durante o período de inverno de 2007, totalizando 90 dias. Com esses dados, foram calculados os índices de conforto térmico Carga Térmica Radiante (CTR) e a variável ambiental (Ta). Uma análise estatística por inferência e descritiva foi realizada com os valores do índice de conforto térmico e da variável ambiental. Com os resultados obtidos, é possível afirmar que a telha reciclada apresentou índices de conforto térmico semelhantes àqueles encontrados para as telhas cerâmicas. O protótipo coberto com telha de fibrocimento apresentou os maiores índices, e o coberto com telha cerâmica branca, os menores índices de conforto térmico. No entanto para o período de inverno e para os horários avaliados, todas as instalações apresentaram índices de conforto térmico fora da zona de termoneutralidade do frango de corte.
Resumo:
This study aimed at evaluating the thermal performance of a modular ceiling system for poultry houses. The reduced- and distorted-scale prototypes used ceiling modules made of reforested wood and were covered with recycled long-life package tiles. The following parameters were measured for 21 days: tile internal surface temperature (ST), globe temperature and humidity index (WBGT), and radiant heat load (RHL). Measurements were made at times of highest heat load (11:00 am, 13:00 pm, and 03:00 pm). Collected data were analyzed by "R" statistics software. Means were compared by multiple comparison test (Tukey) and linear regression was performed, both at 5% significance level. The results showed that the prototype with the ceiling was more efficient to reduce internal tile surface temperature; however, this was not sufficient to provide a comfortable environment for broilers during the growout. Therefore, other techniques to provide proper cooling are required in addition to the ceiling.