543 resultados para Hydrogel
Resumo:
L’utilisation de nanovecteurs pour la livraison contrôlée de principes actifs est un concept commun de nous jours. Les systèmes de livraison actuels présentent encore cependant des limites au niveau du taux de relargage des principes actifs ainsi que de la stabilité des transporteurs. Les systèmes composés à la fois de nanovecteurs (liposomes, microgels et nanogels) et d’hydrogels peuvent cependant permettre de résoudre ces problèmes. Dans cette étude, nous avons développé un système de livraison contrôlé se basant sur l’incorporation d’un nanovecteur dans une matrice hydrogel dans le but de combler les lacunes des systèmes se basant sur un vecteur uniquement. Une telle combinaison pourrait permettre un contrôle accru du relargage par stabilisation réciproque. Plus spécifiquement, nous avons développé un hydrogel structuré intégrant des liposomes, microgels et nanogels séparément chargés en principes actifs modèles potentiellement relargués de manière contrôlé. Ce contrôle a été obtenu par la modification de différents paramètres tels que la température ainsi que la composition et la concentration en nanovecteurs. Nous avons comparé la capacité de chargement et la cinétique de relargage de la sulforhodamine B et de la rhodamine 6G en utilisant des liposomes de DOPC et DPPC à différents ratios, des nanogels de chitosan/acide hyaluronique et des microgels de N-isopropylacrylamide (NIPAM) à différents ratios d’acide méthacrylique, incorporés dans un hydrogel modèle d’acrylamide. Les liposomes présentaient des capacités de chargement modérés avec un relargage prolongé sur plus de dix jours alors que les nanogels présentaient des capacités de chargement plus élevées mais une cinétique de relargage plus rapide avec un épuisement de la cargaison en deux jours. Comparativement, les microgels relarguaient complétement leur contenu en un jour. Malgré une cinétique de relargage plus rapide, les microgels ont démontré la possibilité de contrôler finement le chargement en principe actif. Ce contrôle peut être atteint par la modification des propriétés structurelles ou en changeant le milieu d’incubation, comme l’a montré la corrélation avec les isothermes de Langmuir. Chaque système développé a démontré un potentiel contrôle du taux de relargage, ce qui en fait des candidats pour des investigations futures.
Resumo:
Dissolving polymeric microneedle arrays and hydrogel-forming microneedle arrays have attracted much attention during recent years due mainly to their biocompatibility and capacity for enhanced drug delivery. Nevertheless, for the production of this type of devices, typically, a drying step is required. Microneedles are prepared following a micromoulding technique using aqueous blends of Gantrez® S-97. Currently, production of microneedles arrays involves a long drying process of 48 hours. Therefore alternative drying methods were investigated including microwave radiation and hot air convection.
Resumo:
PURPOSE:
To evaluate the combination of a pressure-indicating sensor film with hydrogel-forming microneedle arrays, as a method of feedback to confirm MN insertion in vivo.
METHODS:
Pilot in vitro insertion studies were conducted using a Texture Analyser to insert MN arrays, coupled with a pressure-indicating sensor film, at varying forces into excised neonatal porcine skin. In vivo studies involved twenty human volunteers, who self-applied two hydrogel-forming MN arrays, one with a pressure-indicating sensor film incorporated and one without. Optical coherence tomography was employed to measure the resulting penetration depth and colorimetric analysis to investigate the associated colour change of the pressure-indicating sensor film.
RESULTS:
Microneedle insertion was achieved in vitro at three different forces, demonstrating the colour change of the pressure-indicating sensor film upon application of increasing pressure. When self-applied in vivo, there was no significant difference in the microneedle penetration depth resulting from each type of array, with a mean depth of 237 μm recorded. When the pressure-indicating sensor film was present, a colour change occurred upon each application, providing evidence of insertion.
CONCLUSIONS:
For the first time, this study shows how the incorporation of a simple, low-cost pressure-indicating sensor film can indicate microneedle insertion in vitro and in vivo, providing visual feedback to assure the user of correct application. Such a strategy may enhance usability of a microneedle device and, hence, assist in the future translation of the technology to widespread clinical use.
Resumo:
L’utilisation de nanovecteurs pour la livraison contrôlée de principes actifs est un concept commun de nous jours. Les systèmes de livraison actuels présentent encore cependant des limites au niveau du taux de relargage des principes actifs ainsi que de la stabilité des transporteurs. Les systèmes composés à la fois de nanovecteurs (liposomes, microgels et nanogels) et d’hydrogels peuvent cependant permettre de résoudre ces problèmes. Dans cette étude, nous avons développé un système de livraison contrôlé se basant sur l’incorporation d’un nanovecteur dans une matrice hydrogel dans le but de combler les lacunes des systèmes se basant sur un vecteur uniquement. Une telle combinaison pourrait permettre un contrôle accru du relargage par stabilisation réciproque. Plus spécifiquement, nous avons développé un hydrogel structuré intégrant des liposomes, microgels et nanogels séparément chargés en principes actifs modèles potentiellement relargués de manière contrôlé. Ce contrôle a été obtenu par la modification de différents paramètres tels que la température ainsi que la composition et la concentration en nanovecteurs. Nous avons comparé la capacité de chargement et la cinétique de relargage de la sulforhodamine B et de la rhodamine 6G en utilisant des liposomes de DOPC et DPPC à différents ratios, des nanogels de chitosan/acide hyaluronique et des microgels de N-isopropylacrylamide (NIPAM) à différents ratios d’acide méthacrylique, incorporés dans un hydrogel modèle d’acrylamide. Les liposomes présentaient des capacités de chargement modérés avec un relargage prolongé sur plus de dix jours alors que les nanogels présentaient des capacités de chargement plus élevées mais une cinétique de relargage plus rapide avec un épuisement de la cargaison en deux jours. Comparativement, les microgels relarguaient complétement leur contenu en un jour. Malgré une cinétique de relargage plus rapide, les microgels ont démontré la possibilité de contrôler finement le chargement en principe actif. Ce contrôle peut être atteint par la modification des propriétés structurelles ou en changeant le milieu d’incubation, comme l’a montré la corrélation avec les isothermes de Langmuir. Chaque système développé a démontré un potentiel contrôle du taux de relargage, ce qui en fait des candidats pour des investigations futures.
Resumo:
Purpose To evaluate the possible use of soft contact lenses (CL) to improve the secretagogue role of diadenosine tetraphosphate (Ap4A) promoting tear secretion. Methods Two conventional hydrogel CL (Omafilcon A and Ocufilcon D) and two silicone hydrogel (SiH) CL (Comfilcon A and Balafilcon A) were used. Ap4A was loaded into the lenses by soaking in a 1 mM Ap4A solution during 12 h. In vitro experiments were performed by placing the lenses in multi-wells during 2 h containing 1 ml of ultrapure water. 100 μl aliquots were taken at time zero and every minute for the first 10 min, and then every 15 min. In vivo experiments were performed in New Zealand rabbits and both the dinucleotide release from SiH and tear secretion were measured by means of Schirmer strips and high-pressure liquid chromatography (HPLC) analysis. Results Ap4A in vitro release experiments in hydrogel CL presented a release time 50 (RT50) of 3.9 ± 0.2 min and 3.1 ± 0.1 min for the non-ionic and the ionic CL, respectively. SiH CL released also Ap4A with RT50 values of 5.1 ± 0.1 min for the non-ionic and 2.7 ± 0.1 min for the ionic CL. In vivo experiments with SiH CL showed RT50 values of 9.3 ± 0.2 min and 8.5 ± 0.2 min for the non-ionic and the ionic respectively. The non-ionic lens Ap4A release was able to induce tear secretion above baseline tear levels for almost 360 min. Conclusion The delivery of Ap4A is slower and the effect lasts longer with non-ionic lenses than ionic lenses.
Resumo:
Purpose: To prepare hydrogels loaded with epicatechin, a strong antioxidant, anti-inflammatory, and neuroprotective tea flavonoid, and characterise them in situ as a vehicle for prolonged and safer drug delivery in patients with post-traumatic spinal cord injury. Methods: Five in situ gel formulations were prepared using chitosan and evaluated in terms of their visual appearance, clarity, pH, viscosity, and in vitro drug release. In vivo anti-inflammatory activity was determined and compared with 2 % piroxicam gel as standard. Motor function activity in a rat model of spinal injury was examined comparatively with i.v. methylprednisolone as standard. Results: The N-methyl pyrrolidone solution (containing 1 % w/w epicatechin with 2 to 10 % w/w chitosan) of the in situ gel formulation had a uniform pH in the range of 4.01 ± 0.12 to 4.27 ± 0.02. High and uniform drug loading, ranging from 94.48 ± 1.28 to 98.08 ± 1.24 %, and good in vitro drug release (79.48 ± 2.84 to 96.48 ± 1.02 % after 7 days) were achieved. The in situ gel prepared from 1 % epicatechin and 2 % chitosan (E5) showed the greatest in vivo anti-inflammatory activity (60.58 % inhibition of paw oedema in standard carrageenan-induced hind rat paw oedema model, compared with 48.08 % for the standard). The gels showed significant therapeutic effectiveness against post-traumainduced spinal injury in rats. E5 elicited maximum motor activity (horizontal bar test) in the spinal injury rat model; the rats that received E5 treatment produced an activity score of 3.62 ± 0.02 at the end of 7 days, compared with 5.0 ± 0.20 following treatment with the standard. Conclusion: In situ epicatechin-loaded gel exhibits significant neuroprotective and anti-inflammatory effects, and therefore can potentially be used for prolonged and safe drug delivery in patients with traumatic spinal cord injury.
Resumo:
The functional and structural performance of a 5 cm synthetic small diameter vascular graft (SDVG) produced by the copolymerization of polyvinyl alcohol hydrogel with low molecular weight dextran (PVA/Dx graft) associated to mesenchymal stem cells (MSCs)-based therapies and anticoagulant treatment with heparin, clopidogrel and warfarin was tested using the ovine model during the healing period of 24 weeks. The results were compared to the ones obtained with standard expanded polyetetrafluoroethylene grafts (ePTFE graft). Blood flow, vessel and graft diameter measurements, graft appearance and patency rate (PR), thrombus, stenosis and collateral vessel formation were evaluated by B-mode ultrasound, audio and color flow Doppler. Graft and regenerated vessels morphologic evaluation was performed by scanning electronic microscopy (SEM), histopathological and immunohistochemical analysis. All PVA/Dx grafts could maintain a similar or higher PR and systolic / diastolic laminar blood flow velocities were similar to ePTFE grafts. CD14 (macrophages) and α-actin (smooth muscle) staining presented similar results in PVA/Dx/MSCs and ePTFE graft groups. Fibrosis layer was lower and endothelial cells were only detected at graft-artery transitions where it was added the MSCs. In conclusion, PVA/Dx graft can be an excellent scaffold candidate for vascular reconstruction, including clinic mechanically challenging applications, such as SDVGs, especially when associated to MSCs-based therapies to promote higher endothelialization and lower fibrosis of the vascular prosthesis, but also higher PR values.
Resumo:
Articular cartilage is a highly hydrated tissue with depth-dependent cellular and matrix properties that provide low-friction load bearing in joints. However, the structure and function are frequently lost and there is insufficient repair response to regenerate high-quality cartilage. Several hydrogel-based tissue-engineering strategies have recently been developed to form constructs with biomimetic zonal variations to improve cartilage repair. Modular hydrogel systems allow for systematic control over hydrogel properties, and advanced fabrication techniques allow for control over construct organization. These technologies have great potential to address many unanswered questions involved in prescribing zonal properties to tissue-engineered constructs for cartilage repair.
Resumo:
Cosmetically tinted soft contact lenses are an attractive option for contact lens wearers. Data that we have gathered from annual contact lens fitting surveys demonstrate that those wearing tinted lenses are more likely to be female (4.6% of all soft lenses fitted vs. 1.6% for males; p < 0.0001) and younger (27 11 years vs. 33 13 years for those wearing non-tinted lenses; p < 0.0001). Tinted lenses tend to be worn more on a part-time basis and are replaced less frequently than non-tinted lenses. The decline in fitting tinted lenses over the past 12 years may be due to (a) the current limited availability of tinted lenses in silicone hydrogel materials and daily disposable replacement frequencies, which together represent a significant majority (78%) of new soft lenses fits today, (b) growing concerns among lens wearers and practitioners relating to the risks of complications associated with the wearing of tinted lenses, and (c) reduced promotion of such lenses by the contact lens industry.
Resumo:
Articular cartilage damage is a persistent and increasing problem with the aging population, and treatments to achieve biological repair or restoration remain a challenge. Cartilage tissue engineering approaches have been investigated for over 20 years, but have yet to achieve the consistency and effectiveness for widespread clinical use. One of the potential reasons for this is that the engineered tissues do not have or establish the normal zonal organization of cells and extracellular matrix that appears critical for normal tissue function. A number of approaches are being taken currently to engineer tissue that more closely mimics the organization of native articular cartilage. This review focuses on the zonal organization of native articular cartilage, strategies being used to develop such organization, the reorganization that occurs after culture or implantation, and future prospects for the tissue engineering of articular cartilage with biomimetic zones.
Resumo:
Purpose: A population based, cross-sectional telephone survey was conducted to estimate the total penetrance of contact lens wear in Australia. Methods: A total of 42,749 households around Australia were randomly selected from the national electronic telephone directory based on postcode distribution. Before contact was attempted, letters of introduction were sent. The number of individuals and contact lens wearers in each household was ascertained and lens wearers were interviewed to determine details of lens type and mode of wear using a structured questionnaire. Results: Of households contacted, 59.2% (19,171/32,405) agreed to participate. Response rates were only marginally higher amongst households that first received a letter of introduction. In these households, 35,914 individuals were identified, of which, 1,798 were contact lens wearers. The penetrance of contact lens wear during the study period was 5.01% (95% CI: 4.78-5.24). Soft hydrogel lenses had the largest penetrance in the community, (66.7% of all wearers), however, their market share decreased significantly over the study period with increased uptake of newly introduced lens types. Conclusions: The penetrance of contact lens wear concurs with market estimates and equates to approximately 680,000 contact lens wearers aged between 15 and 64 years in Australia. The low response rate obtained in this study highlights the difficulty in contemporary use of telephone survey methodology
Resumo:
Objectives. To evaluate the performance of the dynamic-area high-speed videokeratoscopy technique in the assessment of tear film surface quality with and without the presence of soft contact lenses on eye. Methods. Retrospective data from a tear film study using basic high-speed videokeratoscopy, captured at 25 frames per second, (Kopf et al., 2008, J Optom) were used. Eleven subjects had tear film analysis conducted in the morning, midday and evening on the first and seventh day of one week of no lens wear. Five of the eleven subjects then completed an extra week of hydrogel lens wear followed by a week of silicone hydrogel lens wear. Analysis was performed on a 6 second period of the inter-blink recording. The dynamic-area high-speed videokeratoscopy technique uses the maximum available area of Placido ring pattern reflected from the tear interface and eliminates regions of disturbance due to shadows from the eyelashes. A value of tear film surface quality was derived using image rocessing techniques, based on the quality of the reflected ring pattern orientation. Results. The group mean tear film surface quality and the standard deviations for each of the conditions (bare eye, hydrogel lens, and silicone hydrogel lens) showed a much lower coefficient of variation than previous methods (average reduction of about 92%). Bare eye measurements from the right and left eyes of eleven individuals showed high correlation values (Pearson’s correlation r = 0.73, p < 0.05). Repeated measures ANOVA across the 6 second period of measurement in the normal inter-blink period for the bare eye condition showed no statistically significant changes. However, across the 6 second inter-blink period with both contact lenses, statistically significant changes were observed (p < 0.001) for both types of contact lens material. Overall, wearing hydrogel and silicone hydrogel lenses caused the tear film surface quality to worsen compared with the bare eye condition (repeated measures ANOVA, p < 0.0001 for both hydrogel and silicone hydrogel). Conclusions. The results suggest that the dynamic-area method of high-speed videokeratoscopy was able to distinguish and quantify the subtle, but systematic worsening of tear film surface quality in the inter-blink interval in contact lens wear. It was also able to clearly show a difference between bare eye and contact lens wearing conditions.
Resumo:
A common problem in the design of tissue engineered scaffolds using electrospun scaffolds is the poor cellular infiltration into the structure. To tackle this issue, three approaches to scaffold design using electrospinning were investigated: selective leaching of a water-soluble fiber phase (poly ethylene oxide (PEO) or gelatin), the use of micron-sized fibers as the scaffold, and a combination of micron-sized fibers with codeposition of a hyaluronic acid-derivative hydrogel, Heprasil. These designs were achieved by modifying a conventional electrospinning system with two charged capillaries and a rotating mandrel collector. Three types of scaffolds were fabricated: medical grade poly(epsilon-caprolactone)/collagen (mPCL/Col) cospun with PEO or gelatin, mPCL/Col meshes with micron-sized fibers, and mPCL/Col microfibers cosprayed with Heprasil. All three scaffold types supported attachment and proliferation of human fetal osteoblasts. However, selective leaching only marginally improved cellular infiltration when compared to meshes obtained by conventional electrospinning. Better cell penetration was seen in mPCL/Col microfibers, and this effect was more pronounced when Heprasil regions were present in the structure. Thus, such techniques could be further exploited for the design of cell permeable fibrous meshes for tissue engineering applications.