918 resultados para High power lasers
Resumo:
The layer structure of GaInP/AlGaInP quantum well laser diodes (LDs) was grown on GaAs substrate using low-pressure metalorganic chemical vapor deposition (LP-MOCVD) technique. In order to improve the catastrophic optical damage (COD) level of devices, a nonabsorbing window (NAW), which was based on Zn diffusion-induced quantum well intermixing, was fabricated near the both ends of the cavities. Zn diffusions were respectively carried out at 480, 500, 520, 540, and 580 Celsius degree for 20 minutes. The largest energy blue shift of 189.1 meV was observed in the window regions at 580 Celsius degree. When the blue shift was 24.7 meV at 480 Celsius degree, the COD power for the window LD was 86.7% higher than the conventional LD.
Resumo:
By etching a second-order grating directly into the Al-free optical waveguide region of a ridgewaveguide(RW) AlGaInAs/AlGaAs distributed feedback(DFB) laser diode,a front facet output power of 30mW is obtained at about 820nm with a single longitudinal mode. The Al-free grating surface permits the re-growth of a high-quality cladding layer that yields excellent device performance. The threshold current of these laser diodes is 57mA,and the slope efficiency is about 0.32mW/mA.
Resumo:
A novel AIN monolithic microchannel cooled heatsink for high power laser diode array is introduced.The high power stack laser diode array with an AIN monolithic microchannel heatsink is fabricated and tested.The thermal impedance of a 10 stack laser diode array is 0.121℃/W.The pitch between two adjacent bars is 1.17mm.The power level of 611W is achieved under the 20% duty factor condition at an emission wavelength around 808nm.
Resumo:
The technology of zinc-diffusion to improve catastrophic optical damage (COD) threshold of compressively strained GaInP/AlGaInP quantum well laser diodes has been introduced. After zinc-diffusion, about 20-μm-long region at each facet of laser diode has been formed to serve as the window of the lasing light. As a result, the COD threshold has been significantly improved due to the enlargement of bandgap by the zinc-diffusion induced quantum well intermixing, compared with that of the conventional non-window structure. 40-mW continuous wave output power with the fundamental transverse mode has been realized under room temperature for the 3.5-μm-wide ridge waveguide diode. The operation current is 84 mA and the slope efficiency is 0.74 W/A at 40 mW. The lasing wavelength is 656 nm.
Resumo:
High power and high-slope efficiency 650nm band real-refractive-index ridge waveguide AlGaInP laser diodes with compressive strained MQW active layer are formed by pure Ar ion beam etching process.Symmetric laser mesas with high perpendicularity,which are impossible to obtain by traditional wet etching method due to the use of a 15°-misoriented substrate,are obtained by this dry etching method.Laser diodes with 4μm wide,600μm long and 10%/90% coat are fabricated.The typical threshold current of these devices is 46mA at room temperature,and a stable fundamental-mode operation over 40mW is obtained.Very high slope efficiency of 1.4W/A at 10mW and 1.1W/A at 40mW are realized.
Resumo:
In a practical coupling system, a cylindrical microlens is used to collimate the emission of a high powerlaser diode (LD) in the dimension perpendicular to the junction plane. Using passive alignment, the LD isplaced in the focus of the cylindrical microlens generally, regardless of the performance of the multimodeoptical fiber and the LD. In this paper, a more complete analysis is arrived at by ray-tracing technique,by which the angle θ of the ray after refraction is computed as a function of the angle θo of the ray beforerefraction. The focus of the cylindrical microlens is not always the optimal position of the LD. In fact, inorder to achieve a higher coupling efficiency, the optimal distance from the LD to the cylindrical microlensis dependent on not only the radius R and the index of refraction n of the cylindrical microlens, but alsothe divergence angle of the LD in the dimension perpendicular to the junction plane and the numericalaperture (NA) of the multimode optical fiber. The results of this discussion are in good agreement withexperimental results.
Resumo:
The 808nm laser diodes with a broad waveguide are designed and fabricated. The thickness of the Al_(0.35)-Ga_(0.65)As waveguide is increased to 0.9μm. In order to suppress the super modes, the thickness of the Al_(0.55)Ga_(0.45)As cladding layers is reduced to only 0.7μm while keeping the transverse radiation losses of the fundamental mode below 0.2cm~(-1). The structures are grown by metal organic chemical vapour deposition. The devices show excellent performances. The maximum output power of 10.2W in the 100μm broad-area laser diodes is obtained.
Resumo:
国家自然科学基金
Resumo:
Design of the typical laser diode side-pumped Nd:YAG rod system has been discussed using the conventional ray tracing method in this paper. Firstly introduce two basic matrices, refractional and translational matrix, described the transmission of nonparaxial light ray in the medium without concerning the absorption of light. And then, using those matrices, analyze the distribution of pump light in the crystal respectively under the condition of directly pumped system and indirectly pumped system with a cylindrical quartz rod as focusing lens. From the result of simulation, we compare the advantage and disadvantage of the two pumped method, and mainly consider how to select the diameter of the focus lens and cooling tube, indicate the effect of deionized water and cooling tube have on the pump light distribution in the active material. At last, make some conclusions about the side-pumped Nd:YAG laser system.
Resumo:
Electron. Manuf. Packag. Technol. Soc. Chin. Inst. Electron.; IEEE Compon., Packag., Manuf. Technol. Soc. (IEEE-CPMT); Xidian University
Resumo:
Recently a new method for simulating the thermal loading on pistons of diesel engines was reported. The spatially shaped high power laser is employed as the heat source, and some preliminary experimental and numerical work was carried out. In this paper, a further effort was made to extend this simulation method to some other important engine parts such as cylinder heads. The incident Gaussian beam was transformed into concentric multi-circular patterns of specific intensity distributions, with the aid of diffractive optical elements (DOEs). By incorporating the appropriate repetitive laser pulses, the designed transient temperature fields and thermal loadings in the engine parts could be simulated. Thermal-structural numerical models for pistons and cylinder heads were built to predict the transient temperature and thermal stress. The models were also employed to find the optimal intensity distributions of the transformed laser beam that could produce the target transient temperature fields. Comparison of experimental and numerical results demonstrated that this systematic approach is effective in simulating the thermal loading on the engine parts. (C) 2009 Elsevier Ltd. All rights reserved.