937 resultados para Graphical programming
Resumo:
Deep belief networks are a powerful way to model complex probability distributions. However, learning the structure of a belief network, particularly one with hidden units, is difficult. The Indian buffet process has been used as a nonparametric Bayesian prior on the directed structure of a belief network with a single infinitely wide hidden layer. In this paper, we introduce the cascading Indian buffet process (CIBP), which provides a nonparametric prior on the structure of a layered, directed belief network that is unbounded in both depth and width, yet allows tractable inference. We use the CIBP prior with the nonlinear Gaussian belief network so each unit can additionally vary its behavior between discrete and continuous representations. We provide Markov chain Monte Carlo algorithms for inference in these belief networks and explore the structures learned on several image data sets.
Resumo:
A dynamic programming algorithm for joint data detection and carrier phase estimation of continuous-phase-modulated signal is presented. The intent is to combine the robustness of noncoherent detectors with the superior performance of coherent ones. The algorithm differs from the Viterbi algorithm only in the metric that it maximizes over the possible transmitted data sequences. This metric is influenced both by the correlation with the received signal and the current estimate of the carrier phase. Carrier-phase estimation is based on decision guiding, but there is no external phase-locked loop. Instead, the phase of the best complex correlation with the received signal over the last few signaling intervals is used. The algorithm is slightly more complex than the coherent Viterbi algorithm but does not require narrowband filtering of the recovered carrier, as earlier appproaches did, to achieve the same level of performance.
Resumo:
An engineering design environment should allow users to design complex engineering systems, to manage and coordinate the designs as they proceed, and to develop and modify the software tools used for designs. These requirements call for a programming environment with an integrated set of software tools of different functionalities. The required functionalities are mainly: the provision of design algorithms based on suitable numeric software, appropriate data structures for the application area, a user-friendly interface, and the provision of a design database for the long term management of the designs generated. The provision of such an integrated design environment in a functional programming environment with particular emphasis on the provision of appropriate control-theoretic data structures and data model is described. Object-orientation is used to model entities in the application domain, which are represented by persistent objects in the database. Structural properties, relationships and operations on entities are modelled through objects and functions classified into strict types with inheritance semantics and a recursive structure.
Resumo:
We present a novel, implementation friendly and occlusion aware semi-supervised video segmentation algorithm using tree structured graphical models, which delivers pixel labels alongwith their uncertainty estimates. Our motivation to employ supervision is to tackle a task-specific segmentation problem where the semantic objects are pre-defined by the user. The video model we propose for this problem is based on a tree structured approximation of a patch based undirected mixture model, which includes a novel time-series and a soft label Random Forest classifier participating in a feedback mechanism. We demonstrate the efficacy of our model in cutting out foreground objects and multi-class segmentation problems in lengthy and complex road scene sequences. Our results have wide applicability, including harvesting labelled video data for training discriminative models, shape/pose/articulation learning and large scale statistical analysis to develop priors for video segmentation. © 2011 IEEE.
Resumo:
Finding an appropriate turbulence model for a given flow case usually calls for extensive experimentation with both models and numerical solution methods. This work presents the design and implementation of a flexible, programmable software framework for assisting with numerical experiments in computational turbulence. The framework targets Reynolds-averaged Navier-Stokes models, discretized by finite element methods. The novel implementation makes use of Python and the FEniCS package, the combination of which leads to compact and reusable code, where model- and solver-specific code resemble closely the mathematical formulation of equations and algorithms. The presented ideas and programming techniques are also applicable to other fields that involve systems of nonlinear partial differential equations. We demonstrate the framework in two applications and investigate the impact of various linearizations on the convergence properties of nonlinear solvers for a Reynolds-averaged Navier-Stokes model. © 2011 Elsevier Ltd.