867 resultados para Geometry of Fuzzy sets
Resumo:
Due to the increasing amount of data, knowledge aggregation, representation and reasoning are highly important for companies. In this paper, knowledge aggregation is presented as the first step. In the sequel, successful knowledge representation, for instance through graphs, enables knowledge-based reasoning. There exist various forms of knowledge representation through graphs; some of which allow to handle uncertainty and imprecision by invoking the technology of fuzzy sets. The paper provides an overview of different types of graphs stressing their relationships and their essential features.
Resumo:
Resumen La investigación descrita en esta memoria se enmarca en el campo de la lógica borro¬sa. Más concretamente, en el estudio de la incompatibilidad, de la compatibilidad y de la suplementaridad en los conjuntos borrosos y en los de Atanassov. En este orden de ideas, en el primer capítulo, se construyen, tanto de forma directa como indirecta, funciones apropiadas para medir la incompatibilidad entre dos conjuntos borro-sos. Se formulan algunos axiomas para modelizar la continuidad de dichas funciones, y se determina si las medidas propuestas, y otras nuevas que se introducen, verifican algún tipo de continuidad. Finalmente, se establece la noción de conjuntos borrosos compatibles, se introducen axiomas para medir esta propiedad y se construyen algunas medidas de compa¬tibilidad. El segundo capítulo se dedica al estudio de la incompatibilidad y de la compatibilidad en el campo de los conjuntos de Atanassov. Así, en primer lugar, se presenta una definición axiomática de medida de incompatibilidad en este contexto. Después, se construyen medidas de incompatibilidad por medio de los mismos métodos usados en el caso borroso. Además, se formulan axiomas de continuidad y se determina el tipo de continuidad de las medidas propuestas. Finalmente, se sigue un camino similar al caso borroso para el estudio de la compatibilidad. En el tercer capítulo, después de abordar la antonimia de conjuntos borrosos y de conjuntos de Atanassov, se formalizan las nociones de conjuntos suplementarios en estos dos entornos y se presenta, en ambos casos, un método para obtener medidas de suplementaridad a partir de medidas de incompatibilidad vía antónimos. The research described in this report pertains to the field of fuzzy logic and specifically studies incompatibility, compatibility and supplementarity in fuzzy sets and Atanassov's fuzzy sets. As such is the case, Chapter 1 describes both the direct and indirect construction of appropriate functions for measuring incompatibility between two fuzzy sets. We formulate some axioms for modelling the continuity of functions and determine whether the proposed and other measures introduced satisfy any type of continuity. Chapter 2 focuses on the study of incompatibility and compatibility in the field of Ata¬nassov's fuzzy sets. First, we present an axiomatic definition of incompatibility measure in this field. Then, we use the same methods to construct incompatibility measures as in the fuzzy case. Additionally, we formulate continuity axioms and determine the type of conti¬nuity of the proposed measures. Finally, we take a similar approach as in the fuzzy case to the study of compatibility. After examining the antonymy of fuzzy sets and Atanassov's sets, Chapter 3 formalizes the notions of supplementary sets in these two domains, and, in both cases, presents a method for obtaining supplementarity measures from incompatibility measures via antonyms.
Resumo:
A new conceptual model for soil pore-solid structure is formalized. Soil pore-solid structure is proposed to comprise spatially abutting elements each with a value which is its membership to the fuzzy set ''pore,'' termed porosity. These values have a range between zero (all solid) and unity (all pore). Images are used to represent structures in which the elements are pixels and the value of each is a porosity. Two-dimensional random fields are generated by allocating each pixel a porosity by independently sampling a statistical distribution. These random fields are reorganized into other pore-solid structural types by selecting parent points which have a specified local region of influence. Pixels of larger or smaller porosity are aggregated about the parent points and within the region of interest by controlled swapping of pixels in the image. This creates local regions of homogeneity within the random field. This is similar to the process known as simulated annealing. The resulting structures are characterized using one-and two-dimensional variograms and functions describing their connectivity. A variety of examples of structures created by the model is presented and compared. Extension to three dimensions presents no theoretical difficulties and is currently under development.
Resumo:
Fuzzy Bayesian tests were performed to evaluate whether the mother`s seroprevalence and children`s seroconversion to measles vaccine could be considered as ""high"" or ""low"". The results of the tests were aggregated into a fuzzy rule-based model structure, which would allow an expert to influence the model results. The linguistic model was developed considering four input variables. As the model output, we obtain the recommended age-specific vaccine coverage. The inputs of the fuzzy rules are fuzzy sets and the outputs are constant functions, performing the simplest Takagi-Sugeno-Kang model. This fuzzy approach is compared to a classical one, where the classical Bayes test was performed. Although the fuzzy and classical performances were similar, the fuzzy approach was more detailed and revealed important differences. In addition to taking into account subjective information in the form of fuzzy hypotheses it can be intuitively grasped by the decision maker. Finally, we show that the Bayesian test of fuzzy hypotheses is an interesting approach from the theoretical point of view, in the sense that it combines two complementary areas of investigation, normally seen as competitive. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
This note gives a theory of state transition matrices for linear systems of fuzzy differential equations. This is used to give a fuzzy version of the classical variation of constants formula. A simple example of a time-independent control system is used to illustrate the methods. While similar problems to the crisp case arise for time-dependent systems, in time-independent cases the calculations are elementary solutions of eigenvalue-eigenvector problems. In particular, for nonnegative or nonpositive matrices, the problems at each level set, can easily be solved in MATLAB to give the level sets of the fuzzy solution. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Industrial
Resumo:
This paper deals with the problem of estimation maintenance costs for the case of the pitch controls system of wind farms turbines. Previous investigations have estimated these costs as (traditional) “crisp” values, simply ignoring the uncertainty nature of data and information available. This paper purposes an extended version of the estimation model by making use of the Fuzzy Set Theory. The results alert decision-makers to consequent uncertainty of the estimations along with their overall level, thus improving the information given to the mainte-nance support system.
Resumo:
The first main result of the paper is a criterion for a partially commutative group G to be a domain. It allows us to reduce the study of algebraic sets over G to the study of irreducible algebraic sets, and reduce the elementary theory of G (of a coordinate group over G) to the elementary theories of the direct factors of G (to the elementary theory of coordinate groups of irreducible algebraic sets). Then we establish normal forms for quantifier-free formulas over a non-abelian directly indecomposable partially commutative group H. Analogously to the case of free groups, we introduce the notion of a generalised equation and prove that the positive theory of H has quantifier elimination and that arbitrary first-order formulas lift from H to H * F, where F is a free group of finite rank. As a consequence, the positive theory of an arbitrary partially commutative group is decidable.
Resumo:
PLFC is a first-order possibilistic logic dealing with fuzzy constants and fuzzily restricted quantifiers. The refutation proof method in PLFC is mainly based on a generalized resolution rule which allows an implicit graded unification among fuzzy constants. However, unification for precise object constants is classical. In order to use PLFC for similarity-based reasoning, in this paper we extend a Horn-rule sublogic of PLFC with similarity-based unification of object constants. The Horn-rule sublogic of PLFC we consider deals only with disjunctive fuzzy constants and it is equipped with a simple and efficient version of PLFC proof method. At the semantic level, it is extended by equipping each sort with a fuzzy similarity relation, and at the syntactic level, by fuzzily “enlarging” each non-fuzzy object constant in the antecedent of a Horn-rule by means of a fuzzy similarity relation.
Resumo:
In view of the importance of anticipating the occurrence of critical situations in medicine, we propose the use of a fuzzy expert system to predict the need for advanced neonatal resuscitation efforts in the delivery room. This system relates the maternal medical, obstetric and neonatal characteristics to the clinical conditions of the newborn, providing a risk measurement of need of advanced neonatal resuscitation measures. It is structured as a fuzzy composition developed on the basis of the subjective perception of danger of nine neonatologists facing 61 antenatal and intrapartum clinical situations which provide a degree of association with the risk of occurrence of perinatal asphyxia. The resulting relational matrix describes the association between clinical factors and risk of perinatal asphyxia. Analyzing the inputs of the presence or absence of all 61 clinical factors, the system returns the rate of risk of perinatal asphyxia as output. A prospectively collected series of 304 cases of perinatal care was analyzed to ascertain system performance. The fuzzy expert system presented a sensitivity of 76.5% and specificity of 94.8% in the identification of the need for advanced neonatal resuscitation measures, considering a cut-off value of 5 on a scale ranging from 0 to 10. The area under the receiver operating characteristic curve was 0.93. The identification of risk situations plays an important role in the planning of health care. These preliminary results encourage us to develop further studies and to refine this model, which is intended to implement an auxiliary system able to help health care staff to make decisions in perinatal care.
Resumo:
This paper is concerned with the computational efficiency of fuzzy clustering algorithms when the data set to be clustered is described by a proximity matrix only (relational data) and the number of clusters must be automatically estimated from such data. A fuzzy variant of an evolutionary algorithm for relational clustering is derived and compared against two systematic (pseudo-exhaustive) approaches that can also be used to automatically estimate the number of fuzzy clusters in relational data. An extensive collection of experiments involving 18 artificial and two real data sets is reported and analyzed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In some applications with case-based system, the attributes available for indexing are better described as linguistic variables instead of receiving numerical treatment. In these applications, the concept of fuzzy hypercube can be applied to give a geometrical interpretation of similarities among cases. This paper presents an approach that uses geometrical properties of fuzzy hypercube space to make indexing and retrieval processes of cases.
Resumo:
This work analyzes an active fuzzy logic control system in a Rijke type pulse combustor. During the system development, a study of the existing types of control for pulse combustion was carried out and a simulation model was implemented to be used with the package Matlab and Simulink. Blocks which were not available in the simulator library were developed. A fuzzy controller was developed and its membership functions and inference rules were established. The obtained simulation showed that fuzzy logic is viable in the control of combustion instabilities. The obtained results indicated that the control system responded to pulses in an efficient and desirable way. It was verified that the system needed approximately 0.2 s to increase the tube internal pressure from 30 to 90 mbar, with an assumed total delay of 2 ms. The effects of delay variation were studied. Convergence was always obtained and general performance was not affected by the delay. The controller sends a pressure signal in phase with the Rijke tube internal pressure signal, through the speakers, when an increase the oscillations pressure amplitude is desired. On the other hand, when a decrease of the tube internal pressure amplitude is desired, the controller sends a signal 180° out of phase.
Resumo:
One of the critical problems in implementing an intelligent grinding process is the automatic detection of workpiece surface burn. This work uses fuzzy logic as a tool to classify and predict burn levels in the grinding process. Based on acoustic emission signals, cutting power, and the mean-value deviance (MVD), linguistic rules were established for the various burn situations (slight, intermediate, severe) by applying fuzzy logic using the Matlab Toolbox. Three practical fuzzy system models were developed. The first model with two inputs resulted only in a simple analysis process. The second and third models have an additional MVD statistic input, associating information and precision. These two models differ from each other in terms of the rule base developed. The three developed models presented valid responses, proving effective, accurate, reliable and easy to use for the determination of ground workpiece burn. In this analysis, fuzzy logic translates the operator's human experience associated with powerful computational methods.
Resumo:
OBJECTIVE: This study proposes a new approach that considers uncertainty in predicting and quantifying the presence and severity of diabetic peripheral neuropathy. METHODS: A rule-based fuzzy expert system was designed by four experts in diabetic neuropathy. The model variables were used to classify neuropathy in diabetic patients, defining it as mild, moderate, or severe. System performance was evaluated by means of the Kappa agreement measure, comparing the results of the model with those generated by the experts in an assessment of 50 patients. Accuracy was evaluated by an ROC curve analysis obtained based on 50 other cases; the results of those clinical assessments were considered to be the gold standard. RESULTS: According to the Kappa analysis, the model was in moderate agreement with expert opinions. The ROC analysis (evaluation of accuracy) determined an area under the curve equal to 0.91, demonstrating very good consistency in classifying patients with diabetic neuropathy. CONCLUSION: The model efficiently classified diabetic patients with different degrees of neuropathy severity. In addition, the model provides a way to quantify diabetic neuropathy severity and allows a more accurate patient condition assessment.