939 resultados para Galilean covariance
Resumo:
Experimental results for a reactive non-buoyant plume of nitric oxide (NO) in a turbulent grid flow doped with ozone (O3) are presented. The Damkohler number (Nd) for the experiment is of order unity indicating the turbulence and chemistry have similar timescales and both affect the chemical reaction rate. Continuous measurements of two components of velocity using hot-wire anemometry and the two reactants using chemiluminescent analysers have been made. A spatial resolution for the reactants of four Kolmogorov scales has been possible because of the novel design of the experiment. Measurements at this resolution for a reactive plume are not found in the literature. The experiment has been conducted relatively close to the grid in the region where self-similarity of the plume has not yet developed. Statistics of a conserved scalar, deduced from both reactive and non-reactive scalars by conserved scalar theory, are used to establish the mixing field of the plume, which is found to be consistent with theoretical considerations and with those found by other investigators in non-reative flows. Where appropriate the reactive species means and higher moments, probability density functions, joint statistics and spectra are compared with their respective frozen, equilibrium and reaction-dominated limits deduced from conserved scalar theory. The theoretical limits bracket reactive scalar statistics where this should be so according to conserved scalar theory. Both reactants approach their equilibrium limits with greater distance downstream. In the region of measurement, the plume reactant behaves as the reactant not in excess and the ambient reactant behaves as the reactant in excess. The reactant covariance lies outside its frozen and equilibrium limits for this value of Vd. The reaction rate closure of Toor (1969) is compared with the measured reaction rate. The gradient model is used to obtain turbulent diffusivities from turbulent fluxes. Diffusivity of a non-reactive scalar is found to be close to that measured in non-reactive flows by others.
Resumo:
This paper presents a general, global approach to the problem of robot exploration, utilizing a topological data structure to guide an underlying Simultaneous Localization and Mapping (SLAM) process. A Gap Navigation Tree (GNT) is used to motivate global target selection and occluded regions of the environment (called “gaps”) are tracked probabilistically. The process of map construction and the motion of the vehicle alters both the shape and location of these regions. The use of online mapping is shown to reduce the difficulties in implementing the GNT.
Resumo:
Purpose. To create a binocular statistical eye model based on previously measured ocular biometric data. Methods. Thirty-nine parameters were determined for a group of 127 healthy subjects (37 male, 90 female; 96.8% Caucasian) with an average age of 39.9 ± 12.2 years and spherical equivalent refraction of −0.98 ± 1.77 D. These parameters described the biometry of both eyes and the subjects' age. Missing parameters were complemented by data from a previously published study. After confirmation of the Gaussian shape of their distributions, these parameters were used to calculate their mean and covariance matrices. These matrices were then used to calculate a multivariate Gaussian distribution. From this, an amount of random biometric data could be generated, which were then randomly selected to create a realistic population of random eyes. Results. All parameters had Gaussian distributions, with the exception of the parameters that describe total refraction (i.e., three parameters per eye). After these non-Gaussian parameters were omitted from the model, the generated data were found to be statistically indistinguishable from the original data for the remaining 33 parameters (TOST [two one-sided t tests]; P < 0.01). Parameters derived from the generated data were also significantly indistinguishable from those calculated with the original data (P > 0.05). The only exception to this was the lens refractive index, for which the generated data had a significantly larger SD. Conclusions. A statistical eye model can describe the biometric variations found in a population and is a useful addition to the classic eye models.
Resumo:
We address the problem of face recognition on video by employing the recently proposed probabilistic linear discrimi-nant analysis (PLDA). The PLDA has been shown to be robust against pose and expression in image-based face recognition. In this research, the method is extended and applied to video where image set to image set matching is performed. We investigate two approaches of computing similarities between image sets using the PLDA: the closest pair approach and the holistic sets approach. To better model face appearances in video, we also propose the heteroscedastic version of the PLDA which learns the within-class covariance of each individual separately. Our experi-ments on the VidTIMIT and Honda datasets show that the combination of the heteroscedastic PLDA and the closest pair approach achieves the best performance.
Resumo:
We consider quantile regression models and investigate the induced smoothing method for obtaining the covariance matrix of the regression parameter estimates. We show that the difference between the smoothed and unsmoothed estimating functions in quantile regression is negligible. The detailed and simple computational algorithms for calculating the asymptotic covariance are provided. Intensive simulation studies indicate that the proposed method performs very well. We also illustrate the algorithm by analyzing the rainfall–runoff data from Murray Upland, Australia.
Resumo:
Animal models typically require a known genetic pedigree to estimate quantitative genetic parameters. Here we test whether animal models can alternatively be based on estimates of relatedness derived entirely from molecular marker data. Our case study is the morphology of a wild bird population, for which we report estimates of the genetic variance-covariance matrices (G) of six morphological traits using three methods: the traditional animal model; a molecular marker-based approach to estimate heritability based on Ritland's pairwise regression method; and a new approach using a molecular genealogy arranged in a relatedness matrix (R) to replace the pedigree in an animal model. Using the traditional animal model, we found significant genetic variance for all six traits and positive genetic covariance among traits. The pairwise regression method did not return reliable estimates of quantitative genetic parameters in this population, with estimates of genetic variance and covariance typically being very small or negative. In contrast, we found mixed evidence for the use of the pedigree-free animal model. Similar to the pairwise regression method, the pedigree-free approach performed poorly when the full-rank R matrix based on the molecular genealogy was employed. However, performance improved substantially when we reduced the dimensionality of the R matrix in order to maximize the signal to noise ratio. Using reduced-rank R matrices generated estimates of genetic variance that were much closer to those from the traditional model. Nevertheless, this method was less reliable at estimating covariances, which were often estimated to be negative. Taken together, these results suggest that pedigree-free animal models can recover quantitative genetic information, although the signal remains relatively weak. It remains to be determined whether this problem can be overcome by the use of a more powerful battery of molecular markers and improved methods for reconstructing genealogies.
Resumo:
Island races of passerine birds display repeated evolution towards larger body size compared with their continental ancestors. The Capricorn silvereye (Zosterops lateralis chlorocephalus) has become up to six phenotypic standard deviations bigger in several morphological measures since colonization of an island approximately 4000 years ago. We estimated the genetic variance-covariance (G) matrix using full-sib and 'animal model' analyses, and selection gradients, for six morphological traits under field conditions in three consecutive cohorts of nestlings. Significant levels of genetic variance were found for all traits. Significant directional selection was detected for wing and tail lengths in one year and quadratic selection on culmen depth in another year. Although selection gradients on many traits were negative, the predicted evolutionary response to selection of these traits for all cohorts was uniformly positive. These results indicate that the G matrix and predicted evolutionary responses are consistent with those of a population evolving in the manner observed in the island passerine trend, that is, towards larger body size.
Resumo:
The performance of techniques for evaluating multivariate volatility forecasts are not yet as well understood as their univariate counterparts. This paper aims to evaluate the efficacy of a range of traditional statistical-based methods for multivariate forecast evaluation together with methods based on underlying considerations of economic theory. It is found that a statistical-based method based on likelihood theory and an economic loss function based on portfolio variance are the most effective means of identifying optimal forecasts of conditional covariance matrices.
Resumo:
In the context of ambiguity resolution (AR) of Global Navigation Satellite Systems (GNSS), decorrelation among entries of an ambiguity vector, integer ambiguity search and ambiguity validations are three standard procedures for solving integer least-squares problems. This paper contributes to AR issues from three aspects. Firstly, the orthogonality defect is introduced as a new measure of the performance of ambiguity decorrelation methods, and compared with the decorrelation number and with the condition number which are currently used as the judging criterion to measure the correlation of ambiguity variance-covariance matrix. Numerically, the orthogonality defect demonstrates slightly better performance as a measure of the correlation between decorrelation impact and computational efficiency than the condition number measure. Secondly, the paper examines the relationship of the decorrelation number, the condition number, the orthogonality defect and the size of the ambiguity search space with the ambiguity search candidates and search nodes. The size of the ambiguity search space can be properly estimated if the ambiguity matrix is decorrelated well, which is shown to be a significant parameter in the ambiguity search progress. Thirdly, a new ambiguity resolution scheme is proposed to improve ambiguity search efficiency through the control of the size of the ambiguity search space. The new AR scheme combines the LAMBDA search and validation procedures together, which results in a much smaller size of the search space and higher computational efficiency while retaining the same AR validation outcomes. In fact, the new scheme can deal with the case there are only one candidate, while the existing search methods require at least two candidates. If there are more than one candidate, the new scheme turns to the usual ratio-test procedure. Experimental results indicate that this combined method can indeed improve ambiguity search efficiency for both the single constellation and dual constellations respectively, showing the potential for processing high dimension integer parameters in multi-GNSS environment.
Resumo:
Background and aims: Lower-limb lymphoedema is a serious and feared sequela after treatment for gynaecological cancer. Given the limited prospective data on incidence of and risk factors for lymphoedema after treatment for gynaecological cancer we initiated a prospective cohort study in 2008. Methods: Data were available for 353 women with malignant disease. Participants were assessed before treatment and at regular intervals after treatment for two years. Follow-up visits were grouped into time-periods of six weeks to six months (time 1), nine months to 15 months (time 2), and 18 months to 24 months (time 3). Preliminary data analyses were undertaken up to time 2 using generalised estimating equations to model the repeated measures data of Functional Assessment of Cancer Therapy-General (FACT-G) quality of life (QoL) scores and self-reported swelling at each follow-up period (best-fitting covariance structure). Results: Depending on the time-period, between 30% and 40% of patients self-reported swelling of the lower limb. The QoL of those with self-reported swelling was lower at all time-periods compared with those who did not have swelling. Mean (95% CI) FACT-G scores at time 0, 1 and 2 were 80.7 (78.2, 83.2), 83.0 (81.0, 85.0) and 86.3 (84.2, 88.4), respectively for those with swelling and 85.0 (83.0, 86.9), 86.0 (84.1, 88.0) and 88.9 (87.0, 90.7), respectively for those without swelling. Conclusions: Lower-limb swelling adversely influences QoL and change in QoL over time in patients with gynaecological cancer.
Resumo:
Reliable ambiguity resolution (AR) is essential to Real-Time Kinematic (RTK) positioning and its applications, since incorrect ambiguity fixing can lead to largely biased positioning solutions. A partial ambiguity fixing technique is developed to improve the reliability of AR, involving partial ambiguity decorrelation (PAD) and partial ambiguity resolution (PAR). Decorrelation transformation could substantially amplify the biases in the phase measurements. The purpose of PAD is to find the optimum trade-off between decorrelation and worst-case bias amplification. The concept of PAR refers to the case where only a subset of the ambiguities can be fixed correctly to their integers in the integer least-squares (ILS) estimation system at high success rates. As a result, RTK solutions can be derived from these integer-fixed phase measurements. This is meaningful provided that the number of reliably resolved phase measurements is sufficiently large for least-square estimation of RTK solutions as well. Considering the GPS constellation alone, partially fixed measurements are often insufficient for positioning. The AR reliability is usually characterised by the AR success rate. In this contribution an AR validation decision matrix is firstly introduced to understand the impact of success rate. Moreover the AR risk probability is included into a more complete evaluation of the AR reliability. We use 16 ambiguity variance-covariance matrices with different levels of success rate to analyse the relation between success rate and AR risk probability. Next, the paper examines during the PAD process, how a bias in one measurement is propagated and amplified onto many others, leading to more than one wrong integer and to affect the success probability. Furthermore, the paper proposes a partial ambiguity fixing procedure with a predefined success rate criterion and ratio-test in the ambiguity validation process. In this paper, the Galileo constellation data is tested with simulated observations. Numerical results from our experiment clearly demonstrate that only when the computed success rate is very high, the AR validation can provide decisions about the correctness of AR which are close to real world, with both low AR risk and false alarm probabilities. The results also indicate that the PAR procedure can automatically chose adequate number of ambiguities to fix at given high-success rate from the multiple constellations instead of fixing all the ambiguities. This is a benefit that multiple GNSS constellations can offer.
Resumo:
To recognize faces in video, face appearances have been widely modeled as piece-wise local linear models which linearly approximate the smooth yet non-linear low dimensional face appearance manifolds. The choice of representations of the local models is crucial. Most of the existing methods learn each local model individually meaning that they only anticipate variations within each class. In this work, we propose to represent local models as Gaussian distributions which are learned simultaneously using the heteroscedastic probabilistic linear discriminant analysis (PLDA). Each gallery video is therefore represented as a collection of such distributions. With the PLDA, not only the within-class variations are estimated during the training, the separability between classes is also maximized leading to an improved discrimination. The heteroscedastic PLDA itself is adapted from the standard PLDA to approximate face appearance manifolds more accurately. Instead of assuming a single global within-class covariance, the heteroscedastic PLDA learns different within-class covariances specific to each local model. In the recognition phase, a probe video is matched against gallery samples through the fusion of point-to-model distances. Experiments on the Honda and MoBo datasets have shown the merit of the proposed method which achieves better performance than the state-of-the-art technique.
Resumo:
Computer Experiments, consisting of a number of runs of a computer model with different inputs, are now common-place in scientific research. Using a simple fire model for illustration some guidelines are given for the size of a computer experiment. A graph is provided relating the error of prediction to the sample size which should be of use when designing computer experiments. Methods for augmenting computer experiments with extra runs are also described and illustrated. The simplest method involves adding one point at a time choosing that point with the maximum prediction variance. Another method that appears to work well is to choose points from a candidate set with maximum determinant of the variance covariance matrix of predictions.
Resumo:
The research reported here addresses the problem of athlete off-field behaviours as they influence sports’ sponsors, particularly the achievement of sponsorship objectives. The question arises because of incidents of sponsorship contract cancellation following news-media reporting of athletes’ off-field behaviours. Two studies are used to investigate the research question; the first establishes the content of news-media reports, and the second tests the effects of news’ reports on athlete, team and sponsor evaluations using an experimental design. Key assumptions of the research are that sponsorship objectives are principally consumer-based and mediated. Models of sponsorship argue that sponsors aim to reach and influence consumers through sponsees. Assuming this pathway exists is central to sponsorship activities. A corollary is that other mediators, in this case the news-media, may also communicate (uncontrollable) messages such that a consumer audience may be told of negative news that may then be associated with the sponsor. When sponsors cancel contracts it is assumed that their goal is to control the links between their brand and a negative referent. Balance theory is used to discuss the potential effects of negative off-field behaviours of athletes on sponsor’s objectives. Heider’s balance theory (1958) explains that individuals prefer to evaluate linked individuals or entities consistently. In the sponsorship context this presents the possibility that a negative evaluation of the athlete’s behaviour will contribute to correspondingly negative evaluations of the athlete’s team and sponsors. A content analysis (Study 1) was used to survey the types of athlete off-field behaviours commonly reported in a newspaper. In order to provide a local context for the research, articles from the Courier Mail were sampled and teams in the National Rugby League (NRL) competition were the focus of the research. The study identified nearly 2000 articles referring to the NRL competition; 258 of those refer to off-field incidents involving athletes. The various types of behaviours reported include assault, sexual assault allegations, driving under the influence of alcohol, illicit drug use, breaches of club rules, and positive off-field activities (i.e., charitable activities). An experiment (Study 2) tested three news’ article stimuli developed from the behaviours identified in Study 1 in a between-subjects design. A measure of Identification with the Team was used as a covariate variable in the Multivariate Analysis of Covariance analysis. Social identity theory suggests that when an individual identifies with a group, their attitudes and behaviours towards both in- and out-group members are modified. Use of Identification with the Team as a covariate acknowledges that respondents will evaluate behaviours differently according to the attribution of those behaviours to an in- or out-group member. Findings of the research suggest that the news’ article stimuli have significant, large effects on evaluations of athlete off-field behaviour and athlete Likability. Consistent with pretest results, charitable fundraising is regarded as extremely positive; the athlete, correspondingly, is likable. Assault is evaluated as extremely negative, and the athlete as unlikable. DUI scores reveal that the athlete’s behaviour is very negative; however, the athlete’s likability was evaluated as neutral. Treatment group does not produce any significant effects on team or sponsor variables. This research also finds that Identification with the Team has significant, large effects on team variables (Attitude toward the Brand and Corporate Image). Identification also has a significant large effect on athlete Likability, but not on Attitude toward the Act. Identification with the Team does not produce any significant effects on sponsor variables. The results of this research suggest that sponsor’s consumer-based objectives are not threatened by newspaper reports linking athlete off-field behaviour with their brand. Evaluations of sponsor variables (Attitude toward the Sponsor’s Brand and Corporate Image) were consistently positive. Variance in that data, however, cannot be attributed to experimental stimuli or Identification with the Team. These results argue that respondents may regard sponsorships, in principle, as good. Although it is good news for sponsors that negative evaluations of athletes will not produce correspondingly negative evaluations of consumer-based sponsorship objectives, the results indicate problems for sponsorship managers. The failure of Identification with the Team to explain sponsor variable variance indicates that the sponsor has not been evaluated as a linked entity in a relationship with the sporting team and athlete in this research. This result argues that the sponsee-mediated affective communication path that sponsors aim use to communicate with desirable publics is not necessarily a path available to them.
Resumo:
The giant freshwater prawn (Macrobrachium rosenbergii) or GFP is one of the most important freshwater crustacean species in the inland aquaculture sector of many tropical and subtropical countries. Since the 1990’s, there has been rapid global expansion of freshwater prawn farming, especially in Asian countries, with an average annual rate of increase of 48% between 1999 and 2001 (New, 2005). In Vietnam, GFP is cultured in a variety of culture systems, typically in integrated or rotational rice-prawn culture (Phuong et al., 2006) and has become one of the most common farmed aquatic species in the country, due to its ability to grow rapidly and to attract high market price and high demand. Despite potential for expanded production, sustainability of freshwater prawn farming in the region is currently threatened by low production efficiency and vulnerability of farmed stocks to disease. Commercial large scale and small scale GFP farms in Vietnam have experienced relatively low stock productivity, large size and weight variation, a low proportion of edible meat (large head to body ratio), scarcity of good quality seed stock. The current situation highlights the need for a systematic stock improvement program for GFP in Vietnam aimed at improving economically important traits in this species. This study reports on the breeding program for fast growth employing combined (between and within) family selection in giant freshwater prawn in Vietnam. The base population was synthesized using a complete diallel cross including 9 crosses from two local stocks (DN and MK strains) and a third exotic stock (Malaysian strain - MY). In the next three selection generations, matings were conducted between genetically unrelated brood stock to produce full-sib and (paternal) half-sib families. All families were produced and reared separately until juveniles in each family were tagged as a batch using visible implant elastomer (VIE) at a body size of approximately 2 g. After tags were verified, 60 to 120 juveniles chosen randomly from each family were released into two common earthen ponds of 3,500 m2 pond for a grow-out period of 16 to 18 weeks. Selection applied at harvest on body weight was a combined (between and within) family selection approach. 81, 89, 96 and 114 families were produced for the Selection line in the F0, F1, F2 and F3 generations, respectively. In addition to the Selection line, 17 to 42 families were produced for the Control group in each generation. Results reported here are based on a data set consisting of 18,387 body and 1,730 carcass records, as well as full pedigree information collected over four generations. Variance and covariance components were estimated by restricted maximum likelihood fitting a multi-trait animal model. Experiments assessed performance of VIE tags in juvenile GFP of different size classes and individuals tagged with different numbers of tags showed that juvenile GFP at 2 g were of suitable size for VIE tags with no negative effects evident on growth or survival. Tag retention rates were above 97.8% and tag readability rates were 100% with a correct assignment rate of 95% through to mature animal size of up to 170 g. Across generations, estimates of heritability for body traits (body weight, body length, cephalothorax length, abdominal length, cephalothorax width and abdominal width) and carcass weight traits (abdominal weight, skeleton-off weight and telson-off weight) were moderate and ranged from 0.14 to 0.19 and 0.17 to 0.21, respectively. Body trait heritabilities estimated for females were significantly higher than for males whereas carcass weight trait heritabilities estimated for females and males were not significantly different (P > 0.05). Maternal and common environmental effects for body traits accounted for 4 to 5% of the total variance and were greater in females (7 to 10%) than in males (4 to 5%). Genetic correlations among body traits were generally high in both sexes. Genetic correlations between body and carcass weight traits were also high in the mixed sexes. Average selection response (% per generation) for body weight (transformed to square root) estimated as the difference between the Selection and the Control group was 7.4% calculated from least squares means (LSMs), 7.0% from estimated breeding values (EBVs) and 4.4% calculated from EBVs between two consecutive generations. Favourable correlated selection responses (estimated from LSMs) were detected for other body traits (12.1%, 14.5%, 10.4%, 15.5% and 13.3% for body length, cephalothorax length, abdominal length, cephalothorax width and abdominal width, respectively) over three selection generations. Data in the second selection generation showed positive correlated responses for carcass weight traits (8.8%, 8.6% and 8.8% for abdominal weight, skeleton-off weight and telson-off weight, respectively). Data in the third selection generation showed that heritability for body traits were moderate and ranged from 0.06 to 0.11 and 0.11 to 0.22 at weeks 10 and 18, respectively. Body trait heritabilities estimated at week 10 were not significantly lower than at week 18. Genetic correlations between body traits within age and genetic correlations for body traits between ages were generally high. Overall our results suggest that growth rate responds well to the application of family selection and carcass weight traits can also be improved in parallel, using this approach. Moreover, selection for high growth rate in GFP can be undertaken successfully before full market size has been reached. The outcome of this study was production of an improved culture strain of GFP for the Vietnamese culture industry that will be trialed in real farm production environments to confirm the genetic gains identified in the experimental stock improvement program.