8 resultados para Galilean covariance
em CaltechTHESIS
Resumo:
This thesis explores the problem of mobile robot navigation in dense human crowds. We begin by considering a fundamental impediment to classical motion planning algorithms called the freezing robot problem: once the environment surpasses a certain level of complexity, the planner decides that all forward paths are unsafe, and the robot freezes in place (or performs unnecessary maneuvers) to avoid collisions. Since a feasible path typically exists, this behavior is suboptimal. Existing approaches have focused on reducing predictive uncertainty by employing higher fidelity individual dynamics models or heuristically limiting the individual predictive covariance to prevent overcautious navigation. We demonstrate that both the individual prediction and the individual predictive uncertainty have little to do with this undesirable navigation behavior. Additionally, we provide evidence that dynamic agents are able to navigate in dense crowds by engaging in joint collision avoidance, cooperatively making room to create feasible trajectories. We accordingly develop interacting Gaussian processes, a prediction density that captures cooperative collision avoidance, and a "multiple goal" extension that models the goal driven nature of human decision making. Navigation naturally emerges as a statistic of this distribution.
Most importantly, we empirically validate our models in the Chandler dining hall at Caltech during peak hours, and in the process, carry out the first extensive quantitative study of robot navigation in dense human crowds (collecting data on 488 runs). The multiple goal interacting Gaussian processes algorithm performs comparably with human teleoperators in crowd densities nearing 1 person/m2, while a state of the art noncooperative planner exhibits unsafe behavior more than 3 times as often as the multiple goal extension, and twice as often as the basic interacting Gaussian process approach. Furthermore, a reactive planner based on the widely used dynamic window approach proves insufficient for crowd densities above 0.55 people/m2. We also show that our noncooperative planner or our reactive planner capture the salient characteristics of nearly any dynamic navigation algorithm. For inclusive validation purposes, we show that either our non-interacting planner or our reactive planner captures the salient characteristics of nearly any existing dynamic navigation algorithm. Based on these experimental results and theoretical observations, we conclude that a cooperation model is critical for safe and efficient robot navigation in dense human crowds.
Finally, we produce a large database of ground truth pedestrian crowd data. We make this ground truth database publicly available for further scientific study of crowd prediction models, learning from demonstration algorithms, and human robot interaction models in general.
Resumo:
The dissertation is concerned with the mathematical study of various network problems. First, three real-world networks are considered: (i) the human brain network (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a “control and optimization” point of view. After studying these three real-world networks, two abstract network problems are also explored, which are motivated by power systems. The first one is “flow optimization over a flow network” and the second one is “nonlinear optimization over a generalized weighted graph”. The results derived in this dissertation are summarized below.
Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a network of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. First, we consider an electric circuit model and show that the inverse covariance matrix of the node voltages reveals the topology of the circuit. Second, we study the problem of finding the topology of the circuit based on only measurement. In this case, by assuming that the circuit is hidden inside a black box and only the nodal signals are available for measurement, the aim is to find the topology of the circuit when a limited number of samples are available. For this purpose, we deploy the graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso may find most of the circuit topology if the exact covariance matrix is well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to the graphical lasso algorithm and demonstrate its performance. Finally, the technique developed in this work will be applied to the resting-state fMRI data of a number of healthy subjects.
Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the network resources are shared efficiently. Despite the progress in the analysis and synthesis of the Internet congestion control, almost all existing fluid models of congestion control assume that every link in the path of a flow observes the original source rate. To address this issue, a more accurate model is derived in this work for the behavior of the network under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used.
Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power network minimizing the total power generation cost subject to network and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time. To this end, a convex relaxation is proposed, which solves the OPF problem exactly for every radial network and every meshed network with a sufficient number of phase shifters, provided power over-delivery is allowed. The concept of “power over-delivery” is equivalent to relaxing the power balance equations to inequality constraints.
Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow network is considered. In this problem, each node is associated with some possibly unknown injection, each line has two unknown flows at its ends related to each other via a nonlinear function, and all injections and flows need to satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption.
Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. Various sufficient conditions are derived, which relate the polynomial-time solvability of different classes of optimization problems to weak properties of the generalized weighted graph such as its topology and the sign definiteness of its weight sets. As an application, it is proved that a broad class of real and complex optimizations over power networks are polynomial-time solvable due to the passivity of transmission lines and transformers.
Resumo:
This thesis studies three classes of randomized numerical linear algebra algorithms, namely: (i) randomized matrix sparsification algorithms, (ii) low-rank approximation algorithms that use randomized unitary transformations, and (iii) low-rank approximation algorithms for positive-semidefinite (PSD) matrices.
Randomized matrix sparsification algorithms set randomly chosen entries of the input matrix to zero. When the approximant is substituted for the original matrix in computations, its sparsity allows one to employ faster sparsity-exploiting algorithms. This thesis contributes bounds on the approximation error of nonuniform randomized sparsification schemes, measured in the spectral norm and two NP-hard norms that are of interest in computational graph theory and subset selection applications.
Low-rank approximations based on randomized unitary transformations have several desirable properties: they have low communication costs, are amenable to parallel implementation, and exploit the existence of fast transform algorithms. This thesis investigates the tradeoff between the accuracy and cost of generating such approximations. State-of-the-art spectral and Frobenius-norm error bounds are provided.
The last class of algorithms considered are SPSD "sketching" algorithms. Such sketches can be computed faster than approximations based on projecting onto mixtures of the columns of the matrix. The performance of several such sketching schemes is empirically evaluated using a suite of canonical matrices drawn from machine learning and data analysis applications, and a framework is developed for establishing theoretical error bounds.
In addition to studying these algorithms, this thesis extends the Matrix Laplace Transform framework to derive Chernoff and Bernstein inequalities that apply to all the eigenvalues of certain classes of random matrices. These inequalities are used to investigate the behavior of the singular values of a matrix under random sampling, and to derive convergence rates for each individual eigenvalue of a sample covariance matrix.
Resumo:
This thesis presents a simplified state-variable method to solve for the nonstationary response of linear MDOF systems subjected to a modulated stationary excitation in both time and frequency domains. The resulting covariance matrix and evolutionary spectral density matrix of the response may be expressed as a product of a constant system matrix and a time-dependent matrix, the latter can be explicitly evaluated for most envelopes currently prevailing in engineering. The stationary correlation matrix of the response may be found by taking the limit of the covariance response when a unit step envelope is used. The reliability analysis can then be performed based on the first two moments of the response obtained.
The method presented facilitates obtaining explicit solutions for general linear MDOF systems and is flexible enough to be applied to different stochastic models of excitation such as the stationary models, modulated stationary models, filtered stationary models, and filtered modulated stationary models and their stochastic equivalents including the random pulse train model, filtered shot noise, and some ARMA models in earthquake engineering. This approach may also be readily incorporated into finite element codes for random vibration analysis of linear structures.
A set of explicit solutions for the response of simple linear structures subjected to modulated white noise earthquake models with four different envelopes are presented as illustration. In addition, the method has been applied to three selected topics of interest in earthquake engineering, namely, nonstationary analysis of primary-secondary systems with classical or nonclassical dampings, soil layer response and related structural reliability analysis, and the effect of the vertical components on seismic performance of structures. For all the three cases, explicit solutions are obtained, dynamic characteristics of structures are investigated, and some suggestions are given for aseismic design of structures.
Resumo:
This dissertation studies long-term behavior of random Riccati recursions and mathematical epidemic model. Riccati recursions are derived from Kalman filtering. The error covariance matrix of Kalman filtering satisfies Riccati recursions. Convergence condition of time-invariant Riccati recursions are well-studied by researchers. We focus on time-varying case, and assume that regressor matrix is random and identical and independently distributed according to given distribution whose probability distribution function is continuous, supported on whole space, and decaying faster than any polynomial. We study the geometric convergence of the probability distribution. We also study the global dynamics of the epidemic spread over complex networks for various models. For instance, in the discrete-time Markov chain model, each node is either healthy or infected at any given time. In this setting, the number of the state increases exponentially as the size of the network increases. The Markov chain has a unique stationary distribution where all the nodes are healthy with probability 1. Since the probability distribution of Markov chain defined on finite state converges to the stationary distribution, this Markov chain model concludes that epidemic disease dies out after long enough time. To analyze the Markov chain model, we study nonlinear epidemic model whose state at any given time is the vector obtained from the marginal probability of infection of each node in the network at that time. Convergence to the origin in the epidemic map implies the extinction of epidemics. The nonlinear model is upper-bounded by linearizing the model at the origin. As a result, the origin is the globally stable unique fixed point of the nonlinear model if the linear upper bound is stable. The nonlinear model has a second fixed point when the linear upper bound is unstable. We work on stability analysis of the second fixed point for both discrete-time and continuous-time models. Returning back to the Markov chain model, we claim that the stability of linear upper bound for nonlinear model is strongly related with the extinction time of the Markov chain. We show that stable linear upper bound is sufficient condition of fast extinction and the probability of survival is bounded by nonlinear epidemic map.
Resumo:
A general review of stochastic processes is given in the introduction; definitions, properties and a rough classification are presented together with the position and scope of the author's work as it fits into the general scheme.
The first section presents a brief summary of the pertinent analytical properties of continuous stochastic processes and their probability-theoretic foundations which are used in the sequel.
The remaining two sections (II and III), comprising the body of the work, are the author's contribution to the theory. It turns out that a very inclusive class of continuous stochastic processes are characterized by a fundamental partial differential equation and its adjoint (the Fokker-Planck equations). The coefficients appearing in those equations assimilate, in a most concise way, all the salient properties of the process, freed from boundary value considerations. The writer’s work consists in characterizing the processes through these coefficients without recourse to solving the partial differential equations.
First, a class of coefficients leading to a unique, continuous process is presented, and several facts are proven to show why this class is restricted. Then, in terms of the coefficients, the unconditional statistics are deduced, these being the mean, variance and covariance. The most general class of coefficients leading to the Gaussian distribution is deduced, and a complete characterization of these processes is presented. By specializing the coefficients, all the known stochastic processes may be readily studied, and some examples of these are presented; viz. the Einstein process, Bachelier process, Ornstein-Uhlenbeck process, etc. The calculations are effectively reduced down to ordinary first order differential equations, and in addition to giving a comprehensive characterization, the derivations are materially simplified over the solution to the original partial differential equations.
In the last section the properties of the integral process are presented. After an expository section on the definition, meaning, and importance of the integral process, a particular example is carried through starting from basic definition. This illustrates the fundamental properties, and an inherent paradox. Next the basic coefficients of the integral process are studied in terms of the original coefficients, and the integral process is uniquely characterized. It is shown that the integral process, with a slight modification, is a continuous Markoff process.
The elementary statistics of the integral process are deduced: means, variances, and covariances, in terms of the original coefficients. It is shown that an integral process is never temporally homogeneous in a non-degenerate process.
Finally, in terms of the original class of admissible coefficients, the statistics of the integral process are explicitly presented, and the integral process of all known continuous processes are specified.
A model for energy and morphology of crystalline grain boundaries with arbitrary geometric character
Resumo:
It has been well-established that interfaces in crystalline materials are key players in the mechanics of a variety of mesoscopic processes such as solidification, recrystallization, grain boundary migration, and severe plastic deformation. In particular, interfaces with complex morphologies have been observed to play a crucial role in many micromechanical phenomena such as grain boundary migration, stability, and twinning. Interfaces are a unique type of material defect in that they demonstrate a breadth of behavior and characteristics eluding simplified descriptions. Indeed, modeling the complex and diverse behavior of interfaces is still an active area of research, and to the author's knowledge there are as yet no predictive models for the energy and morphology of interfaces with arbitrary character. The aim of this thesis is to develop a novel model for interface energy and morphology that i) provides accurate results (especially regarding "energy cusp" locations) for interfaces with arbitrary character, ii) depends on a small set of material parameters, and iii) is fast enough to incorporate into large scale simulations.
In the first half of the work, a model for planar, immiscible grain boundary is formulated. By building on the assumption that anisotropic grain boundary energetics are dominated by geometry and crystallography, a construction on lattice density functions (referred to as "covariance") is introduced that provides a geometric measure of the order of an interface. Covariance forms the basis for a fully general model of the energy of a planar interface, and it is demonstrated by comparison with a wide selection of molecular dynamics energy data for FCC and BCC tilt and twist boundaries that the model accurately reproduces the energy landscape using only three material parameters. It is observed that the planar constraint on the model is, in some cases, over-restrictive; this motivates an extension of the model.
In the second half of the work, the theory of faceting in interfaces is developed and applied to the planar interface model for grain boundaries. Building on previous work in mathematics and materials science, an algorithm is formulated that returns the minimal possible energy attainable by relaxation and the corresponding relaxed morphology for a given planar energy model. It is shown that the relaxation significantly improves the energy results of the planar covariance model for FCC and BCC tilt and twist boundaries. The ability of the model to accurately predict faceting patterns is demonstrated by comparison to molecular dynamics energy data and experimental morphological observation for asymmetric tilt grain boundaries. It is also demonstrated that by varying the temperature in the planar covariance model, it is possible to reproduce a priori the experimentally observed effects of temperature on facet formation.
Finally, the range and scope of the covariance and relaxation models, having been demonstrated by means of extensive MD and experimental comparison, future applications and implementations of the model are explored.
Resumo:
The feedback coding problem for Gaussian systems in which the noise is neither white nor statistically independent between channels is formulated in terms of arbitrary linear codes at the transmitter and at the receiver. This new formulation is used to determine a number of feedback communication systems. In particular, the optimum linear code that satisfies an average power constraint on the transmitted signals is derived for a system with noiseless feedback and forward noise of arbitrary covariance. The noisy feedback problem is considered and signal sets for the forward and feedback channels are obtained with an average power constraint on each. The general formulation and results are valid for non-Gaussian systems in which the second order statistics are known, the results being applicable to the determination of error bounds via the Chebychev inequality.