949 resultados para Fuzzy P-spaces
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O objetivo do artigo foi avaliar o uso da lógica fuzzy para estimar possibilidade de óbito neonatal. Desenvolveu-se um modelo computacional com base na teoria dos conjuntos fuzzy, tendo como variáveis peso ao nascer, idade gestacional, escore de Apgar e relato de natimorto. Empregou-se o método de inferência de Mamdani, e a variável de saída foi o risco de morte neonatal. Criaram-se 24 regras de acordo com as variáveis de entrada, e a validação do modelo utilizou um banco de dados real de uma cidade brasileira. A acurácia foi estimada pela curva ROC; os riscos foram comparados pelo teste t de Student. O programa MATLAB 6.5 foi usado para construir o modelo. Os riscos médios foram menores para os que sobreviveram (p < 0,001). A acurácia do modelo foi 0,90. A maior acurácia foi com possibilidade de risco igual ou menor que 25% (sensibilidade = 0,70, especificidade = 0,98, valor preditivo negativo = 0,99 e valor preditivo positivo = 0,22). O modelo mostrou acurácia e valor preditivo negativo bons, podendo ser utilizado em hospitais gerais.
Resumo:
O surgimento de novas tecnologias e serviços vem impondo mudanças substanciais ao tradicional sistema de telecomunicações. Múltiplas possibilidades de evolução do sistema fazem da etapa de planejamento um procedimento não só desejável como necessário, principalmente num ambiente de competitividade. A utilização de metodologias abrangentes e flexíveis que possam auxiliar no processo de decisão, fundadas em modelos de otimização, parece um caminho inevitável. Este artigo propõe um modelo de programação linear inteiro misto para ajudar no planejamento estratégico de sistemas de telecomunicações, e em particular da rede de acesso. Os principais componentes de custo e receita são identificados e o modelo é desenvolvido para determinar a configuração da rede (serviços, tecnologias, etc) que maximize a receita esperada pelo operador do sistema. O conceito de números fuzzy é adotado para avaliar o risco técnico-econômico em situações de imprecisão nos dados de demanda. Resultados de experimentos computacionais são apresentados e discutidos.
Resumo:
This work presents the design of a fuzzy controller with simplified architecture that use an artificial neural network working as the aggregation operator for several active fuzzy rules. The simplified architecture of the fuzzy controller is used to minimize the time processing used in the closed loop system operation, the basic procedures of fuzzification are simplified to maximum while all the inference procedures are computed in a private way. As consequence, this simplified architecture allows a fast and easy configuration of the simplified fuzzy controller. The structuring of the fuzzy rules that define the control actions is previously computed using an artificial neural network based on CMAC Cerebellar Model Articulation Controller. The operational limits are standardized and all the control actions are previously calculated and stored in memory. For applications, results and conclusions several configurations of this fuzzy controller are considered.
Resumo:
Robotic vehicle navigation in unstructured and uncertain environments is still a challenge. This paper presents the implementation of a multivalued neurofuzzy controller for autonomous ground vehicle (AGVs) in indoor environments. The control system consists of a hierarchy of mobile robot using multivalued adaptive neuro-fuzzy inference system behaviors.
Resumo:
The crossflow filtration process differs of the conventional filtration by presenting the circulation flow tangentially to the filtration surface. The conventional mathematical models used to represent the process have some limitations in relation to the identification and generalization of the system behavior. In this paper, a system based on fuzzy logic systems is developed to overcome the problems usually found in the conventional mathematical models. Imprecisions and uncertainties associated with the measurements made on the system are automatically incorporated in the fuzzy approach. Simulation results are presented to justify the validity of the proposed approach.
Resumo:
The crossflow filtration process differs of the conventional filtration by presenting the circulation flow tangentially to the filtration surface. The conventional mathematical models used to represent the process have some limitations in relation to the identification and generalization of the system behavior. In this paper, a system based on fuzzy logic systems is developed to overcome the problems usually found in the conventional mathematical models. Imprecisions and uncertainties associated with the measurements made on the system are automatically incorporated in the fuzzy approach. Simulation results are presented to justify the validity of the proposed approach.
Resumo:
This paper describes a novel approach for mapping lightning processes using fuzzy logic. The core regarding lightning process is to identify and to model those uncertain information on mathematical principles. In fact, the lightning process involves several nonlinear features that our current mathematical tools would not be able to model. The estimation process has been carried out using a fuzzy system based on Sugeno's architecture. Simulation results confirm that proposed approach can be efficiently used in these types of problem.
Resumo:
We show that the Hardy space H¹ anal (R2+ x R2+) can be identified with the class of functions f such that f and all its double and partial Hubert transforms Hk f belong to L¹ (R2). A basic tool used in the proof is the bisubharmonicity of |F|q, where F is a vector field that satisfies a generalized conjugate system of Cauchy-Riemann type.
Resumo:
The papers shows, through theoretical studies and simulations, that using the description of the plant by Takagi-Sugeno (T-S), it is possible to design a nonlinear controller to control the position of the leg of a paraplegic patient. The control system was designed to change the angle of the joint knee of 60 degrees. This is the first study that describes the application of Takagi-Sugeno (T-S) models in this kind of problem.
Resumo:
A methodology for pipeline leakage detection using a combination of clustering and classification tools for fault detection is presented here. A fuzzy system is used to classify the running mode and identify the operational and process transients. The relationship between these transients and the mass balance deviation are discussed. This strategy allows for better identification of the leakage because the thresholds are adjusted by the fuzzy system as a function of the running mode and the classified transient level. The fuzzy system is initially off-line trained with a modified data set including simulated leakages. The methodology is applied to a small-scale LPG pipeline monitoring case where portability, robustness and reliability are amongst the most important criteria for the detection system. The results are very encouraging with relatively low levels of false alarms, obtaining increased leakage detection with low computational costs. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper describes a mathematical study about chaotic system and about the unified approach of chaos control via fuzzy control system based in Linear Matrix Inequality to design a controller which synchronizes the transmission/reception system. This system, that was based in Lorenz chaotic circuit, can be used for transmit signals in secure way.
Resumo:
Operator bases are discussed in connection with the construction of phase space representatives of operators in finite-dimensional spaces, and their properties are presented. It is also shown how these operator bases allow for the construction of a finite harmonic oscillator-like coherent state. Creation and annihilation operators for the Fock finite-dimensional space are discussed and their expressions in terms of the operator bases are explicitly written. The relevant finite-dimensional probability distributions are obtained and their limiting behavior for an infinite-dimensional space are calculated which agree with the well known results. (C) 1996 Academic Press, Inc.
Resumo:
The von Neumann-Liouville time evolution equation is represented in a discrete quantum phase space. The mapped Liouville operator and the corresponding Wigner function are explicitly written for the problem of a magnetic moment interacting with a magnetic field and the precessing solution is found. The propagator is also discussed and a time interval operator, associated to a unitary operator which shifts the energy levels in the Zeeman spectrum, is introduced. This operator is associated to the particular dynamical process and is not the continuous parameter describing the time evolution. The pair of unitary operators which shifts the time and energy is shown to obey the Weyl-Schwinger algebra. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
This work presents the design of a fuzzy controller with simplified architecture. This architecture tries to minimize the time processing used in? the several stages of hazy modeling of systems and processes. The basic procedures of fuzzification and defuzzification are simplified to the maximum while the inference procedures are computed in private way. Therefore, the simplified architecture allows a fast and easy configuration of the fuzzy controller.All rules that define the control actions are determined by inference procedures and the defuzzification is made automatically using a simplified algorithm. The fuzzy controller operation is standardized and the control actions are previously calculated For general-purpose application? ann results, the industrial systems of fluid pow cona ol will be considered.