925 resultados para Free-space method
Resumo:
We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed preconditioners and include numerical examples that validate the theory and assess the performance of the preconditioners.
Resumo:
PURPOSE: Respiratory motion correction remains a challenge in coronary magnetic resonance imaging (MRI) and current techniques, such as navigator gating, suffer from sub-optimal scan efficiency and ease-of-use. To overcome these limitations, an image-based self-navigation technique is proposed that uses "sub-images" and compressed sensing (CS) to obtain translational motion correction in 2D. The method was preliminarily implemented as a 2D technique and tested for feasibility for targeted coronary imaging. METHODS: During a 2D segmented radial k-space data acquisition, heavily undersampled sub-images were reconstructed from the readouts collected during each cardiac cycle. These sub-images may then be used for respiratory self-navigation. Alternatively, a CS reconstruction may be used to create these sub-images, so as to partially compensate for the heavy undersampling. Both approaches were quantitatively assessed using simulations and in vivo studies, and the resulting self-navigation strategies were then compared to conventional navigator gating. RESULTS: Sub-images reconstructed using CS showed a lower artifact level than sub-images reconstructed without CS. As a result, the final image quality was significantly better when using CS-assisted self-navigation as opposed to the non-CS approach. Moreover, while both self-navigation techniques led to a 69% scan time reduction (as compared to navigator gating), there was no significant difference in image quality between the CS-assisted self-navigation technique and conventional navigator gating, despite the significant decrease in scan time. CONCLUSIONS: CS-assisted self-navigation using 2D translational motion correction demonstrated feasibility of producing coronary MRA data with image quality comparable to that obtained with conventional navigator gating, and does so without the use of additional acquisitions or motion modeling, while still allowing for 100% scan efficiency and an improved ease-of-use. In conclusion, compressed sensing may become a critical adjunct for 2D translational motion correction in free-breathing cardiac imaging with high spatial resolution. An expansion to modern 3D approaches is now warranted.
Resumo:
The objective of traffic engineering is to optimize network resource utilization. Although several works have been published about minimizing network resource utilization, few works have focused on LSR (label switched router) label space. This paper proposes an algorithm that takes advantage of the MPLS label stack features in order to reduce the number of labels used in LSPs. Some tunnelling methods and their MPLS implementation drawbacks are also discussed. The described algorithm sets up NHLFE (next hop label forwarding entry) tables in each LSR, creating asymmetric tunnels when possible. Experimental results show that the described algorithm achieves a great reduction factor in the label space. The presented works apply for both types of connections: P2MP (point-to-multipoint) and P2P (point-to-point)
Resumo:
The impact of radial k-space sampling and water-selective excitation on a novel navigator-gated cardiac-triggered slab-selective inversion prepared 3D steady-state free-precession (SSFP) renal MR angiography (MRA) sequence was investigated. Renal MRA was performed on a 1.5-T MR system using three inversion prepared SSFP approaches: Cartesian (TR/TE: 5.7/2.8 ms, FA: 85 degrees), radial (TR/TE: 5.5/2.7 ms, FA: 85 degrees) SSFP, and radial SSFP combined with water-selective excitation (TR/TE: 9.9/4.9 ms, FA: 85 degrees). Radial data acquisition lead to significantly reduced motion artifacts (P < 0.05). SNR and CNR were best using Cartesian SSFP (P < 0.05). Vessel sharpness and vessel length were comparable in all sequences. The addition of a water-selective excitation could not improve image quality. In conclusion, radial k-space sampling reduces motion artifacts significantly in slab-selective inversion prepared renal MRA, while SNR and CNR are decreased. The addition of water-selective excitation could not improve the lower CNR in radial scanning.
Resumo:
PURPOSE: To investigate the potential of free-breathing 3D steady-state free precession (SSFP) imaging with radial k-space sampling for coronary MR-angiography (MRA), coronary projection MR-angiography and coronary vessel wall imaging. MATERIALS AND METHODS: A navigator-gated free-breathing T2-prepared 3D SSFP sequence (TR = 6.1 ms, TE = 3.0 ms, flip angle = 120 degrees, field-of-view = 360 mm(2)) with radial k-space sampling (384 radials) was implemented for coronary MRA. For projection coronary MRA, this sequence was combined with a 2D selective aortic spin tagging pulse. Coronary vessel wall imaging was performed using a high-resolution inversion-recovery black-blood 3D radial SSFP sequence (384 radials, TR = 5.3 ms, TE = 2.7 ms, flip angle = 55 degrees, reconstructed resolution 0.35 x 0.35 x 1.2 mm(3)) and a local re-inversion pulse. Six healthy volunteers (two for each sequence) were investigated. Motion artifact level was assessed by two radiologists. Results: In coronary MRA, the coronary lumen was displayed with a high signal and high contrast to the surrounding lumen. Projection coronary MRA demonstrated selective visualization of the coronary lumen while surrounding tissue was almost completely suppressed. In coronary vessel wall imaging, the vessel wall was displayed with a high signal when compared to the blood pool and the surrounding tissue. No visible motion artifacts were seen. Conclusion: 3D radial SSFP imaging enables coronary MRA, coronary projection MRA and coronary vessel wall imaging with a low motion artifact level.
Resumo:
A select-divide-and-conquer variational method to approximate configuration interaction (CI) is presented. Given an orthonormal set made up of occupied orbitals (Hartree-Fock or similar) and suitable correlation orbitals (natural or localized orbitals), a large N-electron target space S is split into subspaces S0,S1,S2,...,SR. S0, of dimension d0, contains all configurations K with attributes (energy contributions, etc.) above thresholds T0={T0egy, T0etc.}; the CI coefficients in S0 remain always free to vary. S1 accommodates KS with attributes above T1≤T0. An eigenproblem of dimension d0+d1 for S0+S 1 is solved first, after which the last d1 rows and columns are contracted into a single row and column, thus freezing the last d1 CI coefficients hereinafter. The process is repeated with successive Sj(j≥2) chosen so that corresponding CI matrices fit random access memory (RAM). Davidson's eigensolver is used R times. The final energy eigenvalue (lowest or excited one) is always above the corresponding exact eigenvalue in S. Threshold values {Tj;j=0, 1, 2,...,R} regulate accuracy; for large-dimensional S, high accuracy requires S 0+S1 to be solved outside RAM. From there on, however, usually a few Davidson iterations in RAM are needed for each step, so that Hamiltonian matrix-element evaluation becomes rate determining. One μhartree accuracy is achieved for an eigenproblem of order 24 × 106, involving 1.2 × 1012 nonzero matrix elements, and 8.4×109 Slater determinants
Resumo:
An implicitly parallel method for integral-block driven restricted active space self-consistent field (RASSCF) algorithms is presented. The approach is based on a model space representation of the RAS active orbitals with an efficient expansion of the model subspaces. The applicability of the method is demonstrated with a RASSCF investigation of the first two excited states of indole
Resumo:
We obtain the exact analytical expression, up to a quadrature, for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise from a region (0,L) in space. We obtain a completely explicit expression for T(x,0) and discuss the dependence of T(x,v) as a function of the size L of the region. We develop a new method that may be used to solve other exit time problems.
Exact solution to the exit-time problem for an undamped free particle driven by Gaussian white noise
Resumo:
In a recent paper [Phys. Rev. Lett. 75, 189 (1995)] we have presented the exact analytical expression for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise out of a region (0,L) in space. In this paper we give a detailed account of the method employed and present results on asymptotic properties and averages of T(x,v).
Resumo:
The authors compared radial steady-state free precession (SSFP) coronary magnetic resonance (MR) angiography, cartesian k-space sampling SSFP coronary MR angiography, and gradient-echo coronary MR angiography in 16 healthy adults and four pilot study patients. Standard gradient-echo MR imaging with a T2 preparatory pulse and cartesian k-space sampling was the reference technique. Image quality was compared by using subjective motion artifact level and objective contrast-to-noise ratio and vessel sharpness. Radial SSFP, compared with cartesian SSFP and gradient-echo MR angiography, resulted in reduced motion artifacts and superior vessel sharpness. Cartesian SSFP resulted in increased motion artifacts (P <.05). Contrast-to-noise ratio with radial SSFP was lower than that with cartesian SSFP and similar to that with the reference technique. Radial SSFP coronary MR angiography appears preferable because of improved definition of vessel borders.
MRI of coronary vessel walls using radial k-space sampling and steady-state free precession imaging.
Resumo:
OBJECTIVE: The objective of our study was to investigate the impact of radial k-space sampling and steady-state free precession (SSFP) imaging on image quality in MRI of coronary vessel walls. SUBJECTS AND METHODS: Eleven subjects were examined on a 1.5-T MR system using three high-resolution navigator-gated and cardiac-triggered 3D black blood sequences (cartesian gradient-echo [GRE], radial GRE, and radial SSFP) with identical spatial resolution (0.9 x 0.9 x 2.4 mm3). The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel wall sharpness, and motion artifacts were analyzed. RESULTS: The mean SNR and CNR of the coronary vessel wall were improved using radial imaging and were best using radial k-space sampling combined with SSFP imaging. Vessel border definition was similar for all three sequences. Radial k-space sampling was found to be less sensitive to motion. Consistently good image quality was seen with the radial GRE sequence. CONCLUSION: Radial k-space sampling in MRI of coronary vessel walls resulted in fewer motion artifacts and improved SNR and CNR. The use of SSFP imaging, however, did not result in improved coronary vessel wall visualization.
Resumo:
OBJECTIVE: To compare the heart-rate monitoring with the doubly labelled water (2H2(18)O) method to estimate total daily energy expenditure in obese and non-obese children. DESIGN: Cross sectional study of obese and normal weight children. SUBJECTS: 13 prepubertal children: six obese (4M, 2F, 9.1 +/- 1.5 years, 47.3 +/- 9.7 kg) and seven non-obese (3M, 4F, 9.3 +/- 0.6 years, 31.8 +/- 3.2 kg). MEASUREMENTS: Total daily energy expenditure was assessed by means of the doubly labelled water method (TEEDLW) and of heart-rate monitoring (TEEHR). RESULTS: TEEHR was significantly (P < 0.05) higher than TEEDLW in obese children (9.47 +/- 0.84 MJ/d vs 8.99 +/- 0.63 MJ/d) whereas it was not different in non-obese children (8.43 +/- 2.02 MJ/d vs 8.42 +/- 2.30 MJ/d, P = NS). The difference of TEE assessed by HR monitoring in the obese group averaged 6.2 +/- 4.7%. At the individual level, the degree of agreement (difference between TEEHR and TEEDLW +/- 2s.d.) was low both in obese (-0.36, 1.32 MJ/d) and in non-obese children (-1.30, 1.34 MJ/d). At the group level, the agreement between the two methods was good in nonobese children (95% c.i. for the bias:-0.59, 0.63 MJ/d) but not in obese children (0.04, 0.92 MJ/d). Duration of sleep and energy expenditure during resting and physical activity were not significantly different in the two groups. Patterns of heart-rate (or derived energy expenditure) during the day-time were similar in obese and non-obese children. CONCLUSION: The HR monitoring technique provides an estimation of TEE close to that assessed by the DLW method in non-obese prepubertal children. In comparison with DLW, the HR monitoring method yields a greater TEE value in obese children.
Resumo:
Breathing-induced bulk motion of the myocardium during data acquisition may cause severe image artifacts in coronary magnetic resonance angiography (MRA). Current motion compensation strategies include breath-holding or free-breathing MR navigator gating and tracking techniques. Navigator-based techniques have been further refined by the applications of sophisticated 2D k-space reordering techniques. A further improvement in image quality and a reduction of relative scanning duration may be expected from a 3D k-space reordering scheme. Therefore, a 3D k-space reordered acquisition scheme including a 3D navigator gated and corrected segmented k-space gradient echo imaging sequence for coronary MRA was implemented. This new zonal motion-adapted acquisition and reordering technique (ZMART) was developed on the basis of a numerical simulation of the Bloch equations. The technique was implemented on a commercial 1.5T MR system, and first phantom and in vivo experiments were performed. Consistent with the results of the theoretical findings, the results obtained in the phantom studies demonstrate a significant reduction of motion artifacts when compared to conventional (non-k-space reordered) gating techniques. Preliminary in vivo findings also compare favorably with the phantom experiments and theoretical considerations. Magn Reson Med 45:645-652, 2001.
Resumo:
The aim of this study was to explore the clinical efficacy of a novel retrograde puncture approach to establish a preperitoneal space for laparoscopic direct inguinal hernia repair with inguinal ring suturing. Forty-two patients who underwent laparoscopic inguinal hernia repair with retrograde puncture for preperitoneal space establishment as well as inguinal ring suturing between August 2013 and March 2014 at our hospital were enrolled. Preperitoneal space was successfully established in all patients, with a mean establishment time of 6 min. Laparoscopic repairs were successful in all patients, with a mean surgical time of 26±15.1 min. Mean postoperative hospitalization duration was 3.0±0.7 days. Two patients suffered from postoperative local hematomas, which were relieved after puncturing and drainage. Four patients had short-term local pain. There were no cases of chronic pain. Patients were followed up for 6 months to 1 year, and no recurrence was observed. Our results demonstrate that preperitoneal space established by the retrograde puncture technique can be successfully used in adult laparoscopic hernioplasty to avoid intraoperative mesh fixation, and thus reduce medical costs.
Resumo:
Thesis (M. Sc.) - Brock University, 1978.