811 resultados para Decoding algorithm
Resumo:
PURPOSE: Most RB1 mutations are unique and distributed throughout the RB1 gene. Their detection can be time-consuming and the yield especially low in cases of conservatively-treated sporadic unilateral retinoblastoma (Rb) patients. In order to identify patients with true risk of developing Rb, and to reduce the number of unnecessary examinations under anesthesia in all other cases, we developed a universal sensitive, efficient and cost-effective strategy based on intragenic haplotype analysis. METHODS: This algorithm allows the calculation of the a posteriori risk of developing Rb and takes into account (a) RB1 loss of heterozygosity in tumors, (b) preferential paternal origin of new germline mutations, (c) a priori risk derived from empirical data by Vogel, and (d) disease penetrance of 90% in most cases. We report the occurrence of Rb in first degree relatives of patients with sporadic Rb who visited the Jules Gonin Eye Hospital, Lausanne, Switzerland, from January 1994 to December 2006 compared to expected new cases of Rb using our algorithm. RESULTS: A total of 134 families with sporadic Rb were enrolled; testing was performed in 570 individuals and 99 patients younger than 4 years old were identified. We observed one new case of Rb. Using our algorithm, the cumulated total a posteriori risk of recurrence was 1.77. CONCLUSIONS: This is the first time that linkage analysis has been validated to monitor the risk of recurrence in sporadic Rb. This should be a useful tool in genetic counseling, especially when direct RB1 screening for mutations leaves a negative result or is unavailable.
Resumo:
The care for a patient with ulcerative colitis (UC) remains challenging despite the fact that morbidity and mortality rates have been considerably reduced during the last 30 years. The traditional management with intravenous corticosteroids was modified by the introduction of ciclosporin and infliximab. In this review, we focus on the treatment of patients with moderate to severe UC. Four typical clinical scenarios are defined and discussed in detail. The treatment recommendations are based on current literature, published guidelines and reviews, and were discussed at a consensus meeting of Swiss experts in the field. Comprehensive treatment algorithms were developed, aimed for daily clinical practice.
Resumo:
In this paper, we are proposing a methodology to determine the most efficient and least costly way of crew pairing optimization. We are developing a methodology based on algorithm optimization on Eclipse opensource IDE using the Java programming language to solve the crew scheduling problems.
Resumo:
Neuroimaging studies analyzing neurophysiological signals are typically based on comparing averages of peri-stimulus epochs across experimental conditions. This approach can however be problematic in the case of high-level cognitive tasks, where response variability across trials is expected to be high and in cases where subjects cannot be considered part of a group. The main goal of this thesis has been to address this issue by developing a novel approach for analyzing electroencephalography (EEG) responses at the single-trial level. This approach takes advantage of the spatial distribution of the electric field on the scalp (topography) and exploits repetitions across trials for quantifying the degree of discrimination between experimental conditions through a classification scheme. In the first part of this thesis, I developed and validated this new method (Tzovara et al., 2012a,b). Its general applicability was demonstrated with three separate datasets, two in the visual modality and one in the auditory. This development allowed then to target two new lines of research, one in basic and one in clinical neuroscience, which represent the second and third part of this thesis respectively. For the second part of this thesis (Tzovara et al., 2012c), I employed the developed method for assessing the timing of exploratory decision-making. Using single-trial topographic EEG activity during presentation of a choice's payoff, I could predict the subjects' subsequent decisions. This prediction was due to a topographic difference which appeared on average at ~516ms after the presentation of payoff and was subject-specific. These results exploit for the first time the temporal correlates of individual subjects' decisions and additionally show that the underlying neural generators start differentiating their responses already ~880ms before the button press. Finally, in the third part of this project, I focused on a clinical study with the goal of assessing the degree of intact neural functions in comatose patients. Auditory EEG responses were assessed through a classical mismatch negativity paradigm, during the very early phase of coma, which is currently under-investigated. By taking advantage of the decoding method developed in the first part of the thesis, I could quantify the degree of auditory discrimination at the single patient level (Tzovara et al., in press). Our results showed for the first time that even patients who do not survive the coma can discriminate sounds at the neural level, during the first hours after coma onset. Importantly, an improvement in auditory discrimination during the first 48hours of coma was predictive of awakening and survival, with 100% positive predictive value. - L'analyse des signaux électrophysiologiques en neuroimagerie se base typiquement sur la comparaison des réponses neurophysiologiques à différentes conditions expérimentales qui sont moyennées après plusieurs répétitions d'une tâche. Pourtant, cette approche peut être problématique dans le cas des fonctions cognitives de haut niveau, où la variabilité des réponses entre les essais peut être très élevéeou dans le cas où des sujets individuels ne peuvent pas être considérés comme partie d'un groupe. Le but principal de cette thèse est d'investiguer cette problématique en développant une nouvelle approche pour l'analyse des réponses d'électroencephalographie (EEG) au niveau de chaque essai. Cette approche se base sur la modélisation de la distribution du champ électrique sur le crâne (topographie) et profite des répétitions parmi les essais afin de quantifier, à l'aide d'un schéma de classification, le degré de discrimination entre des conditions expérimentales. Dans la première partie de cette thèse, j'ai développé et validé cette nouvelle méthode (Tzovara et al., 2012a,b). Son applicabilité générale a été démontrée avec trois ensembles de données, deux dans le domaine visuel et un dans l'auditif. Ce développement a permis de cibler deux nouvelles lignes de recherche, la première dans le domaine des neurosciences cognitives et l'autre dans le domaine des neurosciences cliniques, représentant respectivement la deuxième et troisième partie de ce projet. En particulier, pour la partie cognitive, j'ai appliqué cette méthode pour évaluer l'information temporelle de la prise des décisions (Tzovara et al., 2012c). En se basant sur l'activité topographique de l'EEG au niveau de chaque essai pendant la présentation de la récompense liée à un choix, on a pu prédire les décisions suivantes des sujets (en termes d'exploration/exploitation). Cette prédiction s'appuie sur une différence topographique qui apparaît en moyenne ~516ms après la présentation de la récompense. Ces résultats exploitent pour la première fois, les corrélés temporels des décisions au niveau de chaque sujet séparément et montrent que les générateurs neuronaux de ces décisions commencent à différentier leurs réponses déjà depuis ~880ms avant que les sujets appuient sur le bouton. Finalement, pour la dernière partie de ce projet, je me suis focalisée sur une étude Clinique afin d'évaluer le degré des fonctions neuronales intactes chez les patients comateux. Des réponses EEG auditives ont été examinées avec un paradigme classique de mismatch negativity, pendant la phase précoce du coma qui est actuellement sous-investiguée. En utilisant la méthode de décodage développée dans la première partie de la thèse, j'ai pu quantifier le degré de discrimination auditive au niveau de chaque patient (Tzovara et al., in press). Nos résultats montrent pour la première fois que même des patients comateux qui ne vont pas survivre peuvent discriminer des sons au niveau neuronal, lors de la phase aigue du coma. De plus, une amélioration dans la discrimination auditive pendant les premières 48heures du coma a été observée seulement chez des patients qui se sont réveillés par la suite (100% de valeur prédictive pour un réveil).
Resumo:
Descriptors based on Molecular Interaction Fields (MIF) are highly suitable for drug discovery, but their size (thousands of variables) often limits their application in practice. Here we describe a simple and fast computational method that extracts from a MIF a handful of highly informative points (hot spots) which summarize the most relevant information. The method was specifically developed for drug discovery, is fast, and does not require human supervision, being suitable for its application on very large series of compounds. The quality of the results has been tested by running the method on the ligand structure of a large number of ligand-receptor complexes and then comparing the position of the selected hot spots with actual atoms of the receptor. As an additional test, the hot spots obtained with the novel method were used to obtain GRIND-like molecular descriptors which were compared with the original GRIND. In both cases the results show that the novel method is highly suitable for describing ligand-receptor interactions and compares favorably with other state-of-the-art methods.
Resumo:
A systolic array to implement lattice-reduction-aided lineardetection is proposed for a MIMO receiver. The lattice reductionalgorithm and the ensuing linear detections are operated in the same array, which can be hardware-efficient. All-swap lattice reduction algorithm (ASLR) is considered for the systolic design.ASLR is a variant of the LLL algorithm, which processes all lattice basis vectors within one iteration. Lattice-reduction-aided linear detection based on ASLR and LLL algorithms have very similarbit-error-rate performance, while ASLR is more time efficient inthe systolic array, especially for systems with a large number ofantennas.
Resumo:
From a managerial point of view, the more effcient, simple, and parameter-free (ESP) an algorithm is, the more likely it will be used in practice for solving real-life problems. Following this principle, an ESP algorithm for solving the Permutation Flowshop Sequencing Problem (PFSP) is proposed in this article. Using an Iterated Local Search (ILS) framework, the so-called ILS-ESP algorithm is able to compete in performance with other well-known ILS-based approaches, which are considered among the most effcient algorithms for the PFSP. However, while other similar approaches still employ several parameters that can affect their performance if not properly chosen, our algorithm does not require any particular fine-tuning process since it uses basic "common sense" rules for the local search, perturbation, and acceptance criterion stages of the ILS metaheuristic. Our approach defines a new operator for the ILS perturbation process, a new acceptance criterion based on extremely simple and transparent rules, and a biased randomization process of the initial solution to randomly generate different alternative initial solutions of similar quality -which is attained by applying a biased randomization to a classical PFSP heuristic. This diversification of the initial solution aims at avoiding poorly designed starting points and, thus, allows the methodology to take advantage of current trends in parallel and distributed computing. A set of extensive tests, based on literature benchmarks, has been carried out in order to validate our algorithm and compare it against other approaches. These tests show that our parameter-free algorithm is able to compete with state-of-the-art metaheuristics for the PFSP. Also, the experiments show that, when using parallel computing, it is possible to improve the top ILS-based metaheuristic by just incorporating to it our biased randomization process with a high-quality pseudo-random number generator.
Resumo:
The standard one-machine scheduling problem consists in schedulinga set of jobs in one machine which can handle only one job at atime, minimizing the maximum lateness. Each job is available forprocessing at its release date, requires a known processing timeand after finishing the processing, it is delivery after a certaintime. There also can exists precedence constraints between pairsof jobs, requiring that the first jobs must be completed beforethe second job can start. An extension of this problem consistsin assigning a time interval between the processing of the jobsassociated with the precedence constrains, known by finish-starttime-lags. In presence of this constraints, the problem is NP-hardeven if preemption is allowed. In this work, we consider a specialcase of the one-machine preemption scheduling problem with time-lags, where the time-lags have a chain form, and propose apolynomial algorithm to solve it. The algorithm consist in apolynomial number of calls of the preemption version of the LongestTail Heuristic. One of the applicability of the method is to obtainlower bounds for NP-hard one-machine and job-shop schedulingproblems. We present some computational results of thisapplication, followed by some conclusions.
Resumo:
In this paper we propose a Pyramidal Classification Algorithm,which together with an appropriate aggregation index producesan indexed pseudo-hierarchy (in the strict sense) withoutinversions nor crossings. The computer implementation of thealgorithm makes it possible to carry out some simulation testsby Monte Carlo methods in order to study the efficiency andsensitivity of the pyramidal methods of the Maximum, Minimumand UPGMA. The results shown in this paper may help to choosebetween the three classification methods proposed, in order toobtain the classification that best fits the original structureof the population, provided we have an a priori informationconcerning this structure.
Resumo:
We present a simple randomized procedure for the prediction of a binary sequence. The algorithm uses ideas from recent developments of the theory of the prediction of individual sequences. We show that if thesequence is a realization of a stationary and ergodic random process then the average number of mistakes converges, almost surely, to that of the optimum, given by the Bayes predictor.
Resumo:
This paper compares two well known scan matching algorithms: the MbICP and the pIC. As a result of the study, it is proposed the MSISpIC, a probabilistic scan matching algorithm for the localization of an Autonomous Underwater Vehicle (AUV). The technique uses range scans gathered with a Mechanical Scanning Imaging Sonar (MSIS), and the robot displacement estimated through dead-reckoning with the help of a Doppler Velocity Log (DVL) and a Motion Reference Unit (MRU). The proposed method is an extension of the pIC algorithm. Its major contribution consists in: 1) using an EKF to estimate the local path traveled by the robot while grabbing the scan as well as its uncertainty and 2) proposing a method to group into a unique scan, with a convenient uncertainty model, all the data grabbed along the path described by the robot. The algorithm has been tested on an AUV guided along a 600m path within a marina environment with satisfactory results
Resumo:
Nominal Unification is an extension of first-order unification where terms can contain binders and unification is performed modulo α equivalence. Here we prove that the existence of nominal unifiers can be decided in quadratic time. First, we linearly-reduce nominal unification problems to a sequence of freshness and equalities between atoms, modulo a permutation, using ideas as Paterson and Wegman for first-order unification. Second, we prove that solvability of these reduced problems may be checked in quadràtic time. Finally, we point out how using ideas of Brown and Tarjan for unbalanced merging, we could solve these reduced problems more efficiently
Resumo:
Summary Background: We previously derived a clinical prognostic algorithm to identify patients with pulmonary embolism (PE) who are at low-risk of short-term mortality who could be safely discharged early or treated entirely in an outpatient setting. Objectives: To externally validate the clinical prognostic algorithm in an independent patient sample. Methods: We validated the algorithm in 983 consecutive patients prospectively diagnosed with PE at an emergency department of a university hospital. Patients with none of the algorithm's 10 prognostic variables (age >/= 70 years, cancer, heart failure, chronic lung disease, chronic renal disease, cerebrovascular disease, pulse >/= 110/min., systolic blood pressure < 100 mm Hg, oxygen saturation < 90%, and altered mental status) at baseline were defined as low-risk. We compared 30-day overall mortality among low-risk patients based on the algorithm between the validation and the original derivation sample. We also assessed the rate of PE-related and bleeding-related mortality among low-risk patients. Results: Overall, the algorithm classified 16.3% of patients with PE as low-risk. Mortality at 30 days was 1.9% among low-risk patients and did not differ between the validation and the original derivation sample. Among low-risk patients, only 0.6% died from definite or possible PE, and 0% died from bleeding. Conclusions: This study validates an easy-to-use, clinical prognostic algorithm for PE that accurately identifies patients with PE who are at low-risk of short-term mortality. Low-risk patients based on our algorithm are potential candidates for less costly outpatient treatment.