843 resultados para Complexity (Philosophy)
A Low ML-Decoding Complexity, High Coding Gain, Full-Rate, Full-Diversity STBC for 4 x 2 MIMO System
Resumo:
This paper proposes a full-rate, full-diversity space-time block code(STBC) with low maximum likelihood (ML) decoding complexity and high coding gain for the 4 transmit antenna, 2 receive antenna (4 x 2) multiple-input multiple-output (MIMO) system that employs 4/16-QAM. For such a system, the best code known is the DjABBA code and recently, Biglieri, Hong and Viterbo have proposed another STBC (BHV code) for 4-QAM which has lower ML-decoding complexity than the DjABBA code but does not have full-diversity like the DjABBA code. The code proposed in this paper has the same ML-decoding complexity as the BHV code for any square M-QAM but has full-diversity for 4- and 16-QAM. Compared with the DjABBA code, the proposed code has lower ML-decoding complexity for square M-QAM constellation, higher coding gain for 4- and 16-QAM, and hence a better codeword error rate (CER) performance. Simulation results confirming this are presented.
Resumo:
After Gödel's incompleteness theorems and the collapse of Hilbert's programme Gerhard Gentzen continued the quest for consistency proofs of Peano arithmetic. He considered a finitistic or constructive proof still possible and necessary for the foundations of mathematics. For a proof to be meaningful, the principles relied on should be considered more reliable than the doubtful elements of the theory concerned. He worked out a total of four proofs between 1934 and 1939. This thesis examines the consistency proofs for arithmetic by Gentzen from different angles. The consistency of Heyting arithmetic is shown both in a sequent calculus notation and in natural deduction. The former proof includes a cut elimination theorem for the calculus and a syntactical study of the purely arithmetical part of the system. The latter consistency proof in standard natural deduction has been an open problem since the publication of Gentzen's proofs. The solution to this problem for an intuitionistic calculus is based on a normalization proof by Howard. The proof is performed in the manner of Gentzen, by giving a reduction procedure for derivations of falsity. In contrast to Gentzen's proof, the procedure contains a vector assignment. The reduction reduces the first component of the vector and this component can be interpreted as an ordinal less than epsilon_0, thus ordering the derivations by complexity and proving termination of the process.
Resumo:
The aim of the dissertation is to explore the idea of philosophy as a path to happiness in classical Arabic philosophy. The starting point is in comparison of two distinct currents between the 10th and early 11th centuries, Peripatetic philosophy, represented by al-Fārābī and Ibn Sīnā, and Ismaili philosophy represented by al-Kirmānī and the Brethren of Purity. They initially offer two contrasting views about philosophy in that the attitude of the Peripatetics is rationalistic and secular in spirit, whereas for the Ismailis philosophy represents the esoteric truth behind revelation. Still, they converge in their view that the ultimate purpose of philosophy lies in its ability to lead man towards happiness. Moreover, they share a common concept of happiness as a contemplative ideal of human perfection, which refers primarily to an otherworldly state of the soul s ascent to the spiritual world. For both the way to happiness consists of two parts: theory and practice. The practical part manifests itself in the idea of the purification of the rational soul from its bodily attachments in order for it to direct its attention fully to the contemplative life. Hence, there appears an ideal of philosophical life with the goal of relative detachment from the worldly life. The regulations of the religious law in this context appear as the primary means for the soul s purification, but for all but al-Kirmānī they are complemented by auxiliary philosophical practices. The ascent to happiness, however, takes place primarily through the acquisition of theoretical knowledge. The saving knowledge consists primarily of the conception of the hierarchy of physical and metaphysical reality, but all of philosophy forms a curriculum through which the soul gradually ascends towards a spiritual state of being along an order that is inverse to the Neoplatonic emanationist hierarchy of creation. For Ismaili philosophy the ascent takes place from the exoteric religious sciences towards the esoteric philosophical knowledge. For Peripatetic philosophers logic performs the function of an instrument enabling the ascent, mathematics is treated either as propaedeutic to philosophy or as a mediator between physical and metaphysical knowledge, whereas physics and metaphysics provide the core of knowledge necessary for the attainment of happiness.
Poetics of the Nameless Middle : Japan and the West in Philosophy and Music of the Twentieth Century
Resumo:
This study investigates the affinities between philosophy, aesthetics, and music of Japan and the West. The research is based on the structuralist notion (specifically, on that found in the narratology of Algirdas Julius Greimas), that the universal grammar functions as an abstract principle, underlying all kinds of discourse. The study thus aims to demonstrate how this grammar is manifested in philosophical, aesthetic, and musical texts and how the semiotic homogeneity of these texts can be explained on this basis. Totality and belongingness are the key philosophical concepts presented herein. As distinct from logocentrism manifested as substantializations of the world of ideas , god or mind, which was characteristic of previous Western paradigms, totality was defined as the coexistence of opposites. Thus Heidegger, Merleau-Ponty, Dōgen, and Nishida often illustrated it by identifying fundamental polarities, such as being and nothing, seer and seen, truth and illusion, etc. Accordingly, totality was schematically presented as an all-encompassing middle of the semiotic square. Similar values can be found in aesthetics and arts. Instead of dialectic syntagms, differentiated unity is considered as paradigmatic and the study demonstrates how this is manifested in traditional Japanese and Heideggerian aesthetics, as well as in the aspects of music of Claude Debussy and Tōru Takemitsu.
Resumo:
We present a low-complexity algorithm for intrusion detection in the presence of clutter arising from wind-blown vegetation, using Passive Infra-Red (PIR) sensors in a Wireless Sensor Network (WSN). The algorithm is based on a combination of Haar Transform (HT) and Support-Vector-Machine (SVM) based training and was field tested in a network setting comprising of 15-20 sensing nodes. Also contained in this paper is a closed-form expression for the signal generated by an intruder moving at a constant velocity. It is shown how this expression can be exploited to determine the direction of motion information and the velocity of the intruder from the signals of three well-positioned sensors.
Resumo:
In this dissertation I study language complexity from a typological perspective. Since the structuralist era, it has been assumed that local complexity differences in languages are balanced out in cross-linguistic comparisons and that complexity is not affected by the geopolitical or sociocultural aspects of the speech community. However, these assumptions have seldom been studied systematically from a typological point of view. My objective is to define complexity so that it is possible to compare it across languages and to approach its variation with the methods of quantitative typology. My main empirical research questions are: i) does language complexity vary in any systematic way in local domains, and ii) can language complexity be affected by the geographical or social environment? These questions are studied in three articles, whose findings are summarized in the introduction to the dissertation. In order to enable cross-language comparison, I measure complexity as the description length of the regularities in an entity; I separate it from difficulty, focus on local instead of global complexity, and break it up into different types. This approach helps avoid the problems that plagued earlier metrics of language complexity. My approach to grammar is functional-typological in nature, and the theoretical framework is basic linguistic theory. I delimit the empirical research functionally to the marking of core arguments (the basic participants in the sentence). I assess the distributions of complexity in this domain with multifactorial statistical methods and use different sampling strategies, implementing, for instance, the Greenbergian view of universals as diachronic laws of type preference. My data come from large and balanced samples (up to approximately 850 languages), drawn mainly from reference grammars. The results suggest that various significant trends occur in the marking of core arguments in regard to complexity and that complexity in this domain correlates with population size. These results provide evidence that linguistic patterns interact among themselves in terms of complexity, that language structure adapts to the social environment, and that there may be cognitive mechanisms that limit complexity locally. My approach to complexity and language universals can therefore be successfully applied to empirical data and may serve as a model for further research in these areas.
Resumo:
The method of structured programming or program development using a top-down, stepwise refinement technique provides a systematic approach for the development of programs of considerable complexity. The aim of this paper is to present the philosophy of structured programming through a case study of a nonnumeric programming task. The problem of converting a well-formed formula in first-order logic into prenex normal form is considered. The program has been coded in the programming language PASCAL and implemented on a DEC-10 system. The program has about 500 lines of code and comprises 11 procedures.
Resumo:
This monograph describes the emergence of independent research on logic in Finland. The emphasis is placed on three well-known students of Eino Kaila: Georg Henrik von Wright (1916-2003), Erik Stenius (1911-1990), and Oiva Ketonen (1913-2000), and their research between the early 1930s and the early 1950s. The early academic work of these scholars laid the foundations for today's strong tradition in logic in Finland and also became internationally recognized. However, due attention has not been given to these works later, nor have they been comprehensively presented together. Each chapter of the book focuses on the life and work of one of Kaila's aforementioned students, with a fourth chapter discussing works on logic by authors who would later become known within other disciplines. Through an extensive use of correspondence and other archived material, some insight has been gained into the persons behind the academic personae. Unique and unpublished biographical material has been available for this task. The chapter on Oiva Ketonen focuses primarily on his work on what is today known as proof theory, especially on his proof theoretical system with invertible rules that permits a terminating root-first proof search. The independency of the parallel postulate is proved as an example of the strength of root-first proof search. Ketonen was to our knowledge Gerhard Gentzen's (the 'father' of proof theory) only student. Correspondence and a hitherto unavailable autobiographic manuscript, in addition to an unpublished article on the relationship between logic and epistemology, is presented. The chapter on Erik Stenius discusses his work on paradoxes and set theory, more specifically on how a rigid theory of definitions is employed to avoid these paradoxes. A presentation by Paul Bernays on Stenius' attempt at a proof of the consistency of arithmetic is reconstructed based on Bernays' lecture notes. Stenius correspondence with Paul Bernays, Evert Beth, and Georg Kreisel is discussed. The chapter on Georg Henrik von Wright presents his early work on probability and epistemology, along with his later work on modal logic that made him internationally famous. Correspondence from various archives (especially with Kaila and Charlie Dunbar Broad) further discusses his academic achievements and his experiences during the challenging circumstances of the 1940s.
Resumo:
For an n(t) transmit, n(r) receive antenna system (n(t) x nr system), a full-rate space time block code (STBC) transmits min(n(t), n(r)) complex symbols per channel use. In this paper, a scheme to obtain a full-rate STBC for 4 transmit antennas and any n(r), with reduced ML-decoding complexity is presented. The weight matrices of the proposed STBC are obtained from the unitary matrix representations of a Clifford Algebra. By puncturing the symbols of the STBC, full rate designs can be obtained for n(r) < 4. For any value of n(r), the proposed design offers the least ML-decoding complexity among known codes. The proposed design is comparable in error performance to the well known Perfect code for 4 transmit antennas while offering lower ML-decoding complexity. Further, when n(r) < 4, the proposed design has higher ergodic capacity than the punctured Perfect code. Simulation results which corroborate these claims are presented.
Resumo:
This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multiple-output (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation. Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 x 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations, compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for non-rectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.
Resumo:
Large MIMO systems with tens of antennas in each communication terminal using full-rate non-orthogonal space-time block codes (STBC) from Cyclic Division Algebras (CDA) can achieve the benefits of both transmit diversity as well as high spectral efficiencies. Maximum-likelihood (ML) or near-ML decoding of these large-sized STBCs at low complexities, however, has been a challenge. In this paper, we establish that near-ML decoding of these large STBCs is possible at practically affordable low complexities. We show that the likelihood ascent search (LAS) detector, reported earlier by us for V-BLAST, is able to achieve near-ML uncoded BER performance in decoding a 32x32 STBC from CDA, which employs 32 transmit antennas and sends 32(2) = 1024 complex data symbols in 32 time slots in one STBC matrix (i.e., 32 data symbols sent per channel use). In terms of coded BER, with a 16x16 STBC, rate-3/4 turbo code and 4-QAM (i.e., 24 bps/Hz), the LAS detector performs close to within just about 4 dB from the theoretical MIMO capacity. Our results further show that, with LAS detection, information lossless (ILL) STBCs perform almost as good as full-diversity ILL (FD-ILL) STBCs. Such low-complexity detectors can potentially enable implementation of high spectral efficiency large MIMO systems that could be considered in wireless standards.
Resumo:
Recently, we reported a low-complexity likelihood ascent search (LAS) detection algorithm for large MIMO systems with several tens of antennas that can achieve high spectral efficiencies of the order of tens to hundreds of bps/Hz. Through simulations, we showed that this algorithm achieves increasingly near SISO AWGN performance for increasing number of antennas in Lid. Rayleigh fading. However, no bit error performance analysis of the algorithm was reported. In this paper, we extend our work on this low-complexity large MIMO detector in two directions: i) We report an asymptotic bit error probability analysis of the LAS algorithm in the large system limit, where N-t, N-r -> infinity keeping N-t = N-r, where N-t and N-r are the number of transmit and receive antennas, respectively. Specifically, we prove that the error performance of the LAS detector for V-BLAST with 4-QAM in i.i.d. Rayleigh fading converges to that of the maximum-likelihood (ML) detector as N-t, N-r -> infinity keeping N-t = N-r ii) We present simulated BER and nearness to capacity results for V-BLAST as well as high-rate non-orthogonal STBC from Division Algebras (DA), in a more realistic spatially correlated MIMO channel model. Our simulation results show that a) at an uncoded BER of 10(-3), the performance of the LAS detector in decoding 16 x 16 STBC from DA with N-t = = 16 and 16-QAM degrades in spatially correlated fading by about 7 dB compared to that in i.i.d. fading, and 19) with a rate-3/4 outer turbo code and 48 bps/Hz spectral efficiency, the performance degrades by about 6 dB at a coded BER of 10(-4). Our results further show that providing asymmetry in number of antennas such that N-r > N-t keeping the total receiver array length same as that for N-r = N-t, the detector is able to pick up the extra receive diversity thereby significantly improving the BER performance.
Resumo:
Complexity theory is an important and growing area in computer science that has caught the imagination of many researchers in mathematics, physics and biology. In order to reach out to a large section of scientists and engineers, the paper introduces elementary concepts in complexity theory in a informal manner, motivating the reader with many examples.
Resumo:
The problem of sensor-network-based distributed intrusion detection in the presence of clutter is considered. It is argued that sensing is best regarded as a local phenomenon in that only sensors in the immediate vicinity of an intruder are triggered. In such a setting, lack of knowledge of intruder location gives rise to correlated sensor readings. A signal-space view-point is introduced in which the noise-free sensor readings associated to intruder and clutter appear as surfaces f(s) and f(g) and the problem reduces to one of determining in distributed fashion, whether the current noisy sensor reading is best classified as intruder or clutter. Two approaches to distributed detection are pursued. In the first, a decision surface separating f(s) and f(g) is identified using Neyman-Pearson criteria. Thereafter, the individual sensor nodes interactively exchange bits to determine whether the sensor readings are on one side or the other of the decision surface. Bounds on the number of bits needed to be exchanged are derived, based on communication-complexity (CC) theory. A lower bound derived for the two-party average case CC of general functions is compared against the performance of a greedy algorithm. Extensions to the multi-party case is straightforward and is briefly discussed. The average case CC of the relevant greaterthan (CT) function is characterized within two bits. Under the second approach, each sensor node broadcasts a single bit arising from appropriate two-level quantization of its own sensor reading, keeping in mind the fusion rule to be subsequently applied at a local fusion center. The optimality of a threshold test as a quantization rule is proved under simplifying assumptions. Finally, results from a QualNet simulation of the algorithms are presented that include intruder tracking using a naive polynomial-regression algorithm. 2010 Elsevier B.V. All rights reserved.