400 resultados para ASTM
Resumo:
Comparative wear and corrosion properties of Cr3C2-NiCr (CC-TS) (a high-velocity oxyfuel [HVOF]) and hard chromium (HC) coating's obtained on a steel substrate have been studied. The structural characterization was done before and after measurements by optical microscopy, scanning electron microscopy, and scanning white light interferometry. Wear and corrosion properties were evaluated by ball on disk (ASTM G99-90), rubber wheel (ASTM G65-91), and electrochemical measurements of open circuit and polarization curves. The best corrosion and wear resistance was for the CC-TS obtained by HVOF. The open-circuit potential values measured for both samples after 18 h of immersion we're: -0.240 and -0.550 V, respectively, for CC-TS and HC, versus Ag/AgCl,KClsat. Three orders of magnitude lower volume loss were found for CC-TS (HVOF) after friction tests compared with HC.
Resumo:
The existence of organic and inorganic contaminants present in both fossil and biomass fuels and the fact that they can provide undesirable effects (environmental problems, corrosion processes, lead to storage instability, and others) implies a rigorous quality control of these fuels, although these contaminants make up a small part of the final fuel composition. Considering the rising importance of fuel ethanol in the worldwide panorama, this review aims at reporting the use of successful alternative analytical methods in the monitoring of organic and inorganic contaminants at trace levels, used to determine and to quantify these substances in fuel ethanol and also presenting all official norms for quality control of fuel ethanol employed by ABNT (Brazilian Association of Technical Norms), ASTM (American Society for Testing and Materials), and ECS (European Committee for Standardization).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O presente trabalho tem por objetivo o reaproveitamento de resíduos sólidos na preparação de painéis para uso na arquitetura. Para atingir as metas propostas, painéis foram preparados a partir de resíduos provenientes de embalagens cartonadas e plásticas, utilizando-se como elemento de reforço, resíduos lignocelulósicos (casca de amendoim e de arroz). A concentração e a natureza dos resíduos utilizados como matriz e como carga foram variadas gerando doze condições experimentais diferentes. As propriedades avaliadas dos painéis foram o módulo de ruptura, módulo de elasticidade, tração perpendicular à superfície, inchamento em espessura, absorção de água e densidade. Todos os ensaios foram realizados segundo as normas ASTM D1037 e EN 317, referente à chapa de partículas. Os resultados foram analisados segundo a norma ANSI A208.1 que especifica as propriedades de desempenho requeridas para as chapas de partículas. Os painéis foram classificados como de baixa densidade, podendo ser utilizados como forros, divisórias, revestimento decorativos e demais aplicações que requerem as mesmas propriedades físicas e mecânicas. Os painéis a base de embalagem plástica reforçados com casca de arroz apresentaram propriedades superiores do que os demais painéis produzidos. O elemento arquitetônico desenvolvido neste estudo representa um novo mercado potencial, podendo ser empregado no ambiente urbano e rural, atendendo ao conceito de produto ecoeficiente.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coatings are largely used in industries. However the development of new materials with improved properties still feeds a continuous need for performance, cost or endurance, the coatings are obtained by a hybrid material, organic-inorganic, and this polymer is applied on metallic, ceramic and glassy surfaces. The material generated in-situ on the desired surface has a nanometric structure. Results in abrasion loss (according ASTM standards) showed that the coatings improve the abrasion resistance of stainless steel by 30%, and also, diminish oxidization and surface rugosity.
Resumo:
HDPE and PVC geomembranes are sensitive to changes in their properties when in contact with high temperatures. The effects of hot temperature on polymeric geomembranes are assessed by the ASTM D794 and ASTM D5721.This paper brings an analysis of degradation of the Poly Vinyl Chloride (PVC) and High Density Poly Ethylene (HDPE) geomembranes when exposed to conventional and air oven after specific periods.. Mechanical and physical properties were evaluated. OIT tests were also performanced to evaluate the level of oxidation degradation occurred on the HDPE geomembranes. Geomembranes of two thicknesses were tested: 1.0, 2.0 nun (PVC) and 0.8, 2.5 mm, (HDPE). The results obtained show, for example, that after the last period of exposure, the PVC geomembranes (1.0, 2.0 mm) were more rigid and stiffer than fresh samples. The HDPE geomembranes, on the other hand, when exposed to heat presented increases in deformation. OIT tests showed efficient to detect some level of degradation on the HDPE geomembranes.
Resumo:
The presence of trace neutral organonitrogen compounds as carbazole and indole in derivative petroleum fuels plays an important role in the car's engine maintenance. In addition, these substances contribute to the environmental contamination and their control is necessary because most of them are potentially carcinogenic and mutagenic. For those reasons, a reliable and sensitive method was proposed for the determination of neutral nitrogen compounds in fuel samples, such as gasoline and diesel using preconcentration with modified silica gel (Merck 70-230 mesh ASTM) followed by differential pulse voltammetry (DPV) technique on a glassy carbon electrode. The electrochemical behavior of carbazole and indole studied by cyclic voltammetry (CV) suggests that their reduction occurs via a reversible electron transfer followed by an irreversible chemical reaction. Very well resolved diffusion controlled voltammetric peaks were obtained in dimethylformamide (DMF) with tetrabutylammonium tetrafluoroborate (TBAF(4) 0.1 mol L-1) for indole (-2.27 V) and carbazole (-2.67 V) versus Ag vertical bar AgCl vertical bar KClsat reference electrode. The proposed DPV method showed a good linear response range from 0.10 to 300 mg L-1 and a limit of detection (L.O.D) of 7.48 and 2.66 mu g L-1 for indole and carbazole, respectively. The results showed that simultaneous determination of indole and carbazole presents in spiked gasoline samples were 15.8 +/- 0.3 and 64.6 +/- 0.9 mg L-1 and in spiked diesel samples were 9.29 +/- 1 and 142 +/- 1 mg L-1, respectively. The recovery was evaluated and the results shown the values of 88.9 +/- 0.4 and 90.2 +/- 0.8% for carbazole and indole in fuel determinations. The proposed method was also compared with UV-vis spectrophotometric measures and the results obtained for the two methods were in good agreement according to the F and t Student's tests. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper a set of Brazilian commercial gasoline representative samples from São Paulo State, selected by HCA, plus six samples obtained directly from refineries were analysed by a high-sensitive gas chromatographic (GC) method ASTM D6733. The levels of saturated hydrocarbons and anhydrous ethanol obtained by GC were correlated with the quality obtained from Brazilian Government Petroleum, Natural Gas and Biofuels Agency (ANP) specifications through exploratory analysis (HCA and PCA). This correlation showed that the GC method, together with HCA and PCA, could be employed as a screening technique to determine compliance with the prescribed legal standards of Brazilian gasoline.
Resumo:
The main goal of the present study was to evaluate the effect of different setting accelerator agents on the developed microstructures of calcium phosphate cements (CPCs) by employing the impedance spectroscopy (IS) technique. Six compositions of CPCs were prepared from mixtures of commercial dicalcium phosphate anhydrous (DCPA) and synthesized tetracalcium phosphate (TTCP) as the solid phases. Two TTCP/DCPA molar ratios (1/1 and 1/2) and three liquid phases (aqueous solutions of Na(2)HPO(4), tartaric acid (TA) and oxalic acid (OA), 5% volume fraction) were employed. Initial (I) and final (F) setting times of the cement pastes were determined with Gillmore needles (ASTM standard C266-99). The hardened samples were characterized by X-ray powder diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and apparent density measurements. The IS technique was employed as a non-destructive tool to obtain information related to porosity, tortuosity and homogeneity of the cement microstructures. The formulation prepared from a TTCP/DCPA equimolar mixture and OA as the liquid phase presented the shortest I and F (12 and 20 min, respectively) in comparison to the other studied systems. XRD analyses revealed the formation of low-crystallinity hydroxyapatite (HA) (as the main phase) as well as the presence of little amounts of unreacted DCPA and TTCP after 24 h hardening in 100% relative humidity. This was related to the proposed mechanisms of dissolution of the reactants. The bands observed by FTIR allowed identifying the presence of calcium tartrate and calcium oxalate in the samples prepared from TA and OA, in addition to the characteristic bands of HA. High degree of entanglement of the formed crystals was observed by SEM in samples containing OA. SEM images were also correlated to the apparent densities of the hardened cements. Changes in porosity, tortuosity and microstructural homogeneity were determined in all samples, from IS results, when the TTCP/DCPA ratio was changed from 1/1 to 1/2. The cement formulated from an equimolar mixture of TTCP/DCPA and OA as the liquid phase presented setting times, degree of conversion to low-crystallinity HA and microstructural features suitable to be used as potential bone cement in clinical applications. The IS technique was shown to be a very sensitive and non-destructive tool to relate the paste composition to the developed microstructures. This approach could be very useful to develop calcium phosphate bone cements for specific clinical demands.
Resumo:
In order to cooperate in minimizing the problems of the current and growing volume of waste, this work aims at the production of panels made from industrial waste -thermoplastic (Polypropylene - PP; Polyethylene - PE and Acrylonitrile Butadiene Styrene - ABS) reinforced with agro-industrial waste - pupunha palm waste (shells and sheaths). The properties of the panels were evaluated: density, thickness swelling, water absorption and moisture content. It was used the ASTM D1037; EN 317; and ANSI A208.1 standards regarding particle boards. The best results in physical tests were treatments 1 (100% waste plastic), 6 (60% plastic waste and 40% waste of pupunha) and 7 (70% waste plastic and 30% waste of pupunha). The best results in the mechanical tests were treatments 3 (30% de residuos plasticos e 70% de residuos da pupunha), 4 (40% de residuos plasticos c 60% de residuos da pupunha) and 5 (50% de residuos plasticos e 50% de residuos da pupunha). For mechanical tests it was concluded that the results of modulus of rupture and of modulus of elasticity the best treatments were those with more fibers. In the tensile tests perpendicular to the surface, it is clear that using more waste plastics leads to the best results. It was concluded that the waste can be used as raw material for the production of alternative materials mainly in civil construction and furniture industries, and it can be employed in urban or rural environment, given the concept of eco-efficient products.
Resumo:
The search for an adequate destination to the tires without use is a problem for many countries. The use of tire rubber in concrete through the partial substitution of the small aggregate has for objective the withdrawal of this material of the environment besides serving as alternative material in places that present sand scarcity. However, to use this type of concrete in civil construction it's necessary to verify its structural behavior. The behavior of the adherence enters the bar of armor and the concrete surrounding it has decisive importance with relation to the load capacity of the structures of reinforced concrete. In this context, this work presents, argues and evaluates the results of the experimental studies for determination of the adherence tension according to pulling up assays pull-out normalized for CEB RC6 and also related in the ASTM C-234 in concrete with and without rubber residues. Armors of nominal diameter of 10,0; 12,5 and 16 mm had been used and concrete contend 10% of rubber fibres in substitution to the sand in volume.
Resumo:
The main goal of this work is to demonstrate that the use of recycled material originated from SiC ceramics is viable. These ceramics were produced by commercial starch consolidation process. Before calcination stage, surplus of these materials always appears. This surplus is rich in SiC and starch. Samples were made by material previously milled in automatic mortar and sieved (100 Tyler). Later, 10% of distilled water was added to the material and the mixture was pressed at 40 MPa. In order to characterize the ceramic, three point flexural test were made, according to the ASTM C1161/94 norm. The results were analyzed by Weibull statistical method. Apparent density and porosity measures also were made, according to ASTM C20/87 norm. A verification of the surface was made in the fracture area by the depth from focus method and SEM image analysis. The results showed that the recycling process is fully viable, being a good economic option and reduce possible pollutant effect to the environment.