GC Fingerprints Coupled to Pattern-Recognition Multivariate SIMCA Chemometric Analysis for Brazilian Gasoline Quality Studies


Autoria(s): Hatanaka, Rafael Rodrigues; Flumignan, Danilo Luiz; de Oliveira, Jose Eduardo
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/10/2009

Resumo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

ASTM D6729 gas chromatographic fingerprinting coupled to pattern-recognition multivariate soft independent modeling of class analogy (SIMCA) chemometric analysis provides an original and alternative approach to screening Brazilian commercial gasoline quality. SIMCA, was performed on gas chromatographic fingerprints to classify the quality of representative commercial gasoline samples selected by hierarchical cluster analysis and collected over a 5 month period from gas stations in So Paulo State, Brazil. Following an optimized ASTM D6729 gas chromatographic-SIMCA algorithm, it was possible to correctly classify the majority of commercial gasoline samples. The method could be employed for rapid monitoring to discourage adulteration.

Formato

1135-1142

Identificador

http://dx.doi.org/10.1365/s10337-009-1277-7

Chromatographia. Wiesbaden: Vieweg, v. 70, n. 7-8, p. 1135-1142, 2009.

0009-5893

http://hdl.handle.net/11449/26154

10.1365/s10337-009-1277-7

WOS:000271069400016

Idioma(s)

eng

Publicador

Vieweg

Relação

Chromatographia

Direitos

closedAccess

Palavras-Chave #Gas chromatography #ASTM D6729 #Pattern-recognition multivariate SIMCA #Brazilian gasoline
Tipo

info:eu-repo/semantics/article