978 resultados para ultrassonografia Doppler em cores
Resumo:
We compare the results of our JCMT spectral line survey of molecular gas towards ultracompact HII regions with the predictions of models of sulphur chemistry in hot cores. We investigate the range of evolutionary models that are consistent with the observed physical conditions and chemical abundances, and see to what extent it is possible to constrain core ages by comparing abundances with the predictions of chemical models. The observed abundance ratios vary little from source to source, suggesting that all the sources are at a similar evolutionary stage. The models are capable of predicting the observed abundances of H2S, SO, SO2, and CS. The models fail to predict the amount of OCS observed, suggesting that an alternative formation route is required. An initial H2S abundance from grain mantle evaporation of similar to 10(-7) is preferred.
Resumo:
We have observed the 3-2 transitions of DCN and (HCN)-N-15 in a number of hot molecular cores previously surveyed by us with the interesting result that the DCN/HCN ratio is low, a few times 10(-3), in the hot cores. The abundance ratio of DCN/HCN is derived both 'on-core' and 'off-core' and, in general is larger at the 'off-core' positions. Comparision with chemical models of these sources indicates that DCN liberated from evaporated ices can be destroyed rapidly in the hot gas by reaction with atomic hydrogen, which works to reset the the initial DCN/HCN ratio in the ice to the gas-phase atomic D/H ratio. The low DCN/HCN abundance ratio we measure can be reached in less than 10(4) years, consistent with previous estimates of the core ages, if the activation energy of the reaction is less than 500 K.
Resumo:
We study the chemical evolution in the central core of contracting interstellar clouds. The chemical rate equations and the hydrodynamic equations are integrated simultaneously. The. contraction is followed from very low density (n = 10 cm(-3)) to a high-density core with n > 10(7) cm(-3). The chemical evolution is studied for various physical and chemical conditions, including the effects of varying the cosmic ray ionization rate, in order to understand the observed structures in TMC-1 and the extended ridge cloud in Orion. Our results give good agreement with the observations for models with fast ion-dipole reaction rates, low cosmic ray ionization rates and low depletion of N and S. It is also found that there should be different stages of evolution with different densities in these sources.
Resumo:
Nine H II regions of the LMC were mapped in (CO)-C-13(1-0) and three in (CO)-C-12(1-0) to study the physical properties of the interstellar medium in the Magellanic Clouds. For N113 the molecular core is found to have a peak position which differs from that of the associated H II region by 20 ''. Toward this molecular core the (CO)-C-12 and (CO)-C-13 peak T-MB line temperatures of 7.3 K and 1.2 K are the highest so far found in the Magellanic Clouds. The molecular concentrations associated with N113, N44BC, N159HW, and N214DE in the LMC and LIRS 36 in the SMC were investigated in a variety of molecular species to study the chemical properties of the interstellar medium. I(HCO+)/I(HCN) and I(HCN)/I(HNC) intensity ratios as well as lower limits to the I((CO)-C-13)/I((CO)-O-18) ratio were derived for the rotational 1-0 transitions. Generally, HCO+ is stronger than HCN, and HCN is stronger than HNC. The high relative HCO+ intensities are consistent with a high ionization flux from supernovae remnants and young stars, possibly coupled with a large extent of the HCO+ emission region. The bulk of the HCN arises from relatively compact dense cloud cores. Warm or shocked gas enhances HCN relative to HNC. From chemical model calculations it is predicted that I(HCN)/I(HNC) close to one should be obtained with higher angular resolution (less than or similar to 30 '') toward the cloud cores. Comparing virial masses with those obtained from the integrated CO intensity provides an H-2 mass-to-CO luminosity conversion factor of 1.8 x 10(20) mol cm(-2) (K km s(-1))(-1) for N113 and 2.4 x 10(20) mol cm(-2) (K km s(-1))(-1) for N44BC. This is consistent with values derived for the Galactic disk.
Resumo:
This paper presents the results of a model of the chemistry of deuterium-bearing molecules in hot molecular cores. It is found that because hydrogen- and deuterium-bearing molecules are destroyed by the same reactions at about the same rates, the initial fractionation present in ice mantles persists for over 10(4) yr. This is the case for a wide range of physical conditions, so it is safe to infer the fractionation on grain surfaces from observations of deuterated molecules in hot cores. The implications of the observed abundances of deuterium-bearing species in Orion are then discussed.
Resumo:
Hot molecular cores in star-forming regions are known to have gas-phase chemical compositions determined by the material evaporated from the icy mantles of interstellar grains, followed by subsequent reactions in the gas phase. Current models suggest that the evaporated material is rich in hydrogenated species. In this paper, we consider the chemistry induced in a hot core by the release of phosphine, PH3 from interstellar grains. We find that PH3 is rapidly destroyed by a series of reactions with atomic hydrogen and is converted, within 10(4) yr, into atomic P, and PO and PN, with P atoms being the most abundant species. Other P-bearing molecules can be formed in the hot gas, but on time-scales that are long compared to those of the hot cores.
Resumo:
We have modeled the gas phase chemistry of warm molecular material around protostars that is seeded with evaporating grain mantles. We show that the release of simple molecules into the gas drives ion-molecule and neutral chemistries which can account for many of the complex 0-bearing and N-bearing molecules observed in hot cores. Initial grain mantle components and secondary product molecules are identified, and the observational consequences are discussed.
Resumo:
Exoplanet transit and Doppler surveys discover many binary stars during their operation that can be used to conduct a variety of ancillary science. Specifically, eclipsing binary stars can be used to study the stellar mass-radius relationship and to test predictions of theoretical stellar evolution models. By cross-referencing 24 binary stars found in the MARVELS Pilot Project with SuperWASP photometry, we find two new eclipsing binaries, TYC 0272-00458-1 and TYC 1422-01328-1, which we use as case studies to develop a general approach to eclipsing binaries in survey data. TYC 0272-00458-1 is a single-lined spectroscopic binary for which we calculate a mass of the secondary and radii for both components using reasonable constraints on the primary mass through several different techniques. For a primary mass of M 1 = 0.92 ± 0.1 M sun, we find M 2 = 0.610 ± 0.036 M sun, R 1 = 0.932 ± 0.076 R sun, and R 2 = 0.559 ± 0.102 R sun, and find that both stars have masses and radii consistent with model predictions. TYC 1422-01328-1 is a triple-component system for which we can directly measure the masses and radii of the eclipsing pair. We find that the eclipsing pair consists of an evolved primary star (M 1 = 1.163 ± 0.034 M sun, R 1 = 2.063 ± 0.058 R sun) and a G-type dwarf secondary (M 2 = 0.905 ± 0.067 M sun, R 2 = 0.887 ± 0.037 R sun). We provide the framework necessary to apply this analysis to much larger data sets.
Resumo:
The fast ignitor scheme for inertial confinement fusion requires forward driving of the critical density surface by light pressure (hole boring) to allow energy deposition close to the dense fuel. The recession velocity of the critical density surface has been observed to be nu/c = 0.015 at an irradiance of 1.0 x 10(19) W cm(-2) at a wavelength of 1.05 micron, in quantitative agreement with modeling. (C) 1996 American Institute of Physics.
Resumo:
Long-range strain fields associated with dislocation cores at an oxide interface are shown to be sufficient enough to create significant variations in the chemical composition around the core (Cottrell atmospheres). Such stress-assisted diffusion of cations towards the cores is proposed to significantly impact the properties of nanoscale functional devices. The figure shows a Z-contrast image of a single dislocation core at an oxide interface.
Resumo:
With increasing demands on storage devices in the modern communication environment, the storage area network (SAN) has evolved to provide a direct connection allowing these storage devices to be accessed efficiently. To optimize the performance of a SAN, a three-stage hybrid electronic/optical switching node architecture based on the concept of a MPLS label switching mechanism, aimed at serving as a multi-protocol label switching (MPLS) ingress label edge router (LER) for a SAN-enabled application, has been designed. New shutter-based free-space multi-channel optical switching cores are employed as the core switch fabric to solve the packet contention and switching path conflict problems. The system-level node architecture design constraints are evaluated through self-similar traffic sourced from real gigabit Ethernet network traces and storage systems. The extension performance of a SAN over a proposed WDM ring network, aimed at serving as an MPLS-enabled transport network, is also presented and demonstrated.
Resumo:
Acidity peaks in Greenland ice cores have been used as critical reference horizons for synchronizing ice core records, aiding the construction of a single Greenland Ice Core Chronology (GICC05) for the Holocene. Guided by GICC05, we examined sub-sections of three Greenland cores in the search for tephra from specific eruptions that might facilitate the linkage of ice core records, the dating of prehistoric tephras and the understanding of the eruptions. Here we report the identification of 14 horizons with tephra particles, including 11 that have not previously been reported from the North Atlantic region and that have the potential to be valuable isochrons. The positions of tephras whose major element data are consistent with ash from the Katmai AD 1912 and Öraefajökull AD 1362 eruptions confirm the annually resolved ice core chronology for the last 700 years. We provide a more refined date for the so-called “AD860B” tephra, a widespread isochron found across NW Europe, and present new evidence relating to the 17th century BC Thera/Aniakchak debate that shows N. American eruptions likely contributed to the acid signals at this time. Our results emphasize the variable spatial and temporal distributions of volcanic products in Greenland ice that call for a more cautious approach in the attribution of acid signals to specific eruptive events.
Resumo:
Methods are presented for the rapid design of DSP ASICs based on the use of a series of hierarchical VHDL libraries which are portable across many silicon foundries. These allows complex DSP silicon systems to be developed in a small fraction of the time normally required. Resulting designs are highly competitive with those developed using more conventional methods. The approach is illustrated using several examples. These include ADPCM codecs, as well as DCT and FFT cores.
Resumo:
Methods are presented for developing synthesizable FFT cores. These are based on a modular approach in which parameterized commutator and processor blocks are cascaded to implement the computations required in many important FFT signal flow graphs. In addition, it is shown how the use of a digital serial data organization can be used to produce systems that offer 100% processor utilization along with reductions in storage requirements. The approach has been used to create generators for the automated synthesis of FFT cores that are portable across a broad range of silicon technologies. Resulting chip designs are competitive with ones created using manual methods but with significant reductions in design times.